Duque-Daza Carlos A, Murillo-Rincón Jairo, Espinosa-Moreno Andrés S, Alberini Federico, Alexiadis Alessio, Garzón-Alvarado Diego A, Thomas Andrew M, Simmons Mark J H
GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogota D.C., 111321, Colombia.
School of Chemical Engineering, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, United Kingdom.
Build Environ. 2024 May 15;256:None. doi: 10.1016/j.buildenv.2024.111444.
Ultra-Clean-Air (UCA) operating theatres aim to minimise surgical instrument contamination and wound infection through high flow rates of ultra-clean air, reducing the presence of Microbe Carrying Particles (MCPs). This study investigates the airflow patterns and ventilation characteristics of a UCA operating theatre (OT) under standard ventilation system operating conditions, considering both empty and partially occupied scenarios. Utilising a precise computational model, quasi-Direct Numerical Simulations (qDNS) were conducted to delineate flow velocity profiles, energy spectra, distributions of turbulent kinetic energy, energy dissipation rate, local Kolmogorov scales, and pressure-based coherent structures. These results were also complemented by a tracer gas decay analysis following ASHRAE standard guidelines. Simulations showed that contrary to the intended laminar regime, the OT's geometry inherently fosters a predominantly turbulent airflow, sustained until evacuation through the exhaust vents, and facilitating recirculation zones irrespective of occupancy level. Notably, the occupied scenario demonstrated superior ventilation efficiency, a phenomenon attributed to enhanced kinetic energy induced by the additional obstructions. The findings underscore the critical role of UCA-OT design in mitigating MCP dissemination, highlighting the potential to augment the design to optimise airflow across a broader theatre spectrum, thereby diminishing recirculation zones and consequently reducing the propensity for Surgical Site Infections (SSIs). The study advocates for design refinements to harness the turbulent dynamics beneficially, steering towards a safer surgical environment.
超净空气(UCA)手术室旨在通过高流量的超净空气将手术器械污染和伤口感染降至最低,减少携带微生物颗粒(MCP)的存在。本研究调查了标准通风系统运行条件下UCA手术室(OT)的气流模式和通风特性,同时考虑了空手术室和部分有人的情况。利用精确的计算模型,进行了准直接数值模拟(qDNS),以描绘流速剖面、能谱、湍动能分布、能量耗散率、局部柯尔莫哥洛夫尺度和基于压力的相干结构。这些结果还通过遵循美国供热、制冷与空调工程师协会(ASHRAE)标准指南的示踪气体衰减分析得到补充。模拟结果表明,与预期的层流状态相反,手术室的几何结构本身会促进形成主要为湍流的气流,这种气流一直持续到通过排气口排出,并且无论占用水平如何都会形成回流区。值得注意的是,有人的情况下通风效率更高,这一现象归因于额外障碍物引起的动能增强。研究结果强调了UCA手术室设计在减轻MCP传播方面的关键作用,突出了改进设计以优化更广泛手术室范围内气流的潜力,从而减少回流区,进而降低手术部位感染(SSI)的可能性。该研究主张进行设计改进,以有益地利用湍流动力学,朝着更安全的手术环境发展。