Suppr超能文献

深度学习解析衰竭人心脏中的微血管动力学。

Deep Learning Resolves Myovascular Dynamics in the Failing Human Heart.

作者信息

Karpurapu Anish, Williams Helen A, DeBenedittis Paige, Baker Caroline E, Ren Simiao, Thomas Michael C, Beard Anneka J, Devlin Garth W, Harrington Josephine, Parker Lauren E, Smith Abigail K, Mainsah Boyla, Pla Michelle Mendiola, Asokan Aravind, Bowles Dawn E, Iversen Edwin, Collins Leslie, Karra Ravi

机构信息

Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA.

出版信息

JACC Basic Transl Sci. 2024 May 27;9(5):674-686. doi: 10.1016/j.jacbts.2024.02.007. eCollection 2024 May.

Abstract

The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep learning-based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of 368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endothelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for users with minimal machine learning experience.

摘要

成年哺乳动物心脏中存在少量循环心肌细胞(CMs)。使用基于显微镜的方法准确量化循环事件需要大量图像。CardioCount是一种新的基于深度学习的流程,用于在显微图像中严格对细胞核进行评分。当应用于一个包含368434张人类显微图像的数据库时,我们发现了成年人类心脏中CMs与心脏内皮细胞之间耦合生长的证据。此外,我们发现血管稀疏和CM肥大在终末期心力衰竭中相互关联。CardioCount可通过GitHub以及面向机器学习经验最少的用户的Google Colab供用户使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验