AlRyalat Saif Aldeen, Musleh Ayman Mohammed, Kahook Malik Y
Department of Ophthalmology, The University of Jordan, Amman, Jordan.
Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, United States.
Front Ophthalmol (Lausanne). 2024 Jun 7;4:1387190. doi: 10.3389/fopht.2024.1387190. eCollection 2024.
This study evaluates the diagnostic accuracy of a multimodal large language model (LLM), ChatGPT-4, in recognizing glaucoma using color fundus photographs (CFPs) with a benchmark dataset and without prior training or fine tuning.
The publicly accessible Retinal Fundus Glaucoma Challenge "REFUGE" dataset was utilized for analyses. The input data consisted of the entire 400 image testing set. The task involved classifying fundus images into either 'Likely Glaucomatous' or 'Likely Non-Glaucomatous'. We constructed a confusion matrix to visualize the results of predictions from ChatGPT-4, focusing on accuracy of binary classifications (glaucoma vs non-glaucoma).
ChatGPT-4 demonstrated an accuracy of 90% with a 95% confidence interval (CI) of 87.06%-92.94%. The sensitivity was found to be 50% (95% CI: 34.51%-65.49%), while the specificity was 94.44% (95% CI: 92.08%-96.81%). The precision was recorded at 50% (95% CI: 34.51%-65.49%), and the F1 Score was 0.50.
ChatGPT-4 achieved relatively high diagnostic accuracy without prior fine tuning on CFPs. Considering the scarcity of data in specialized medical fields, including ophthalmology, the use of advanced AI techniques, such as LLMs, might require less data for training compared to other forms of AI with potential savings in time and financial resources. It may also pave the way for the development of innovative tools to support specialized medical care, particularly those dependent on multimodal data for diagnosis and follow-up, irrespective of resource constraints.
本研究使用基准数据集,在未进行预先训练或微调的情况下,评估多模态大语言模型ChatGPT-4通过彩色眼底照片(CFP)识别青光眼的诊断准确性。
利用公开可用的视网膜眼底青光眼挑战“REFUGE”数据集进行分析。输入数据包括完整的400张图像测试集。任务是将眼底图像分类为“可能患有青光眼”或“可能未患青光眼”。我们构建了一个混淆矩阵来可视化ChatGPT-4的预测结果,重点关注二元分类(青光眼与非青光眼)的准确性。
ChatGPT-4的准确率为90%,95%置信区间(CI)为87.06%-92.94%。敏感性为50%(95%CI:34.51%-65.49%),而特异性为94.44%(95%CI:92.08%-96.81%)。精确率记录为50%(95%CI:34.51%-65.49%),F1分数为0.50。
ChatGPT-4在未对CFP进行预先微调的情况下实现了相对较高的诊断准确性。考虑到包括眼科在内的专业医学领域数据稀缺,与其他形式的人工智能相比,使用先进的人工智能技术(如大语言模型)可能需要更少的数据进行训练,从而有可能节省时间和财政资源。这也可能为开发支持专业医疗护理的创新工具铺平道路,特别是那些依赖多模态数据进行诊断和随访的工具,而不受资源限制。