Suppr超能文献

人工智能在干眼病诊断中的应用:系统评价和荟萃分析。

Applications of Artificial Intelligence in Diagnosis of Dry Eye Disease: A Systematic Review and Meta-Analysis.

机构信息

Psychiatry and Behavioral Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.

Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Cornea. 2024 Oct 1;43(10):1310-1318. doi: 10.1097/ICO.0000000000003626. Epub 2024 Jul 9.

Abstract

PURPOSE

Clinical diagnosis of dry eye disease is based on a subjective Ocular Surface Disease Index questionnaire or various objective tests, however, these diagnostic methods have several limitations.

METHODS

We conducted a comprehensive review of articles discussing various applications of artificial intelligence (AI) models in the diagnosis of the dry eye disease by searching PubMed, Web of Science, Scopus, and Google Scholar databases up to December 2022. We initially extracted 2838 articles, and after removing duplicates and applying inclusion and exclusion criteria based on title and abstract, we selected 47 eligible full-text articles. We ultimately selected 17 articles for the meta-analysis after applying inclusion and exclusion criteria on the full-text articles. We used the Standards for Reporting of Diagnostic Accuracy Studies to evaluate the quality of the methodologies used in the included studies. The performance criteria for measuring the effectiveness of AI models included area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. We calculated the pooled estimate of accuracy using the random-effects model.

RESULTS

The meta-analysis showed that pooled estimate of accuracy was 91.91% (95% confidence interval: 87.46-95.49) for all studies. The mean (±SD) of area under the receiver operating characteristic curve, sensitivity, and specificity were 94.1 (±5.14), 89.58 (±6.13), and 92.62 (±6.61), respectively.

CONCLUSIONS

This study revealed that AI models are more accurate in diagnosing dry eye disease based on some imaging modalities and suggested that AI models are promising in augmenting dry eye clinics to assist physicians in diagnosis of this ocular surface condition.

摘要

目的

干眼症的临床诊断基于主观的眼表疾病指数问卷或各种客观测试,但这些诊断方法存在一些局限性。

方法

我们通过搜索 PubMed、Web of Science、Scopus 和 Google Scholar 数据库,对截至 2022 年 12 月讨论人工智能 (AI) 模型在干眼症诊断中各种应用的文章进行了全面回顾。我们最初提取了 2838 篇文章,在去除重复项并根据标题和摘要应用纳入和排除标准后,选择了 47 篇符合条件的全文文章。在对全文文章应用纳入和排除标准后,我们最终选择了 17 篇进行荟萃分析。我们使用诊断准确性研究报告标准评估纳入研究中使用的方法的质量。用于衡量 AI 模型有效性的性能标准包括受试者工作特征曲线下面积、敏感性、特异性和准确性。我们使用随机效应模型计算准确性的汇总估计值。

结果

荟萃分析显示,所有研究的准确性汇总估计值为 91.91%(95%置信区间:87.46-95.49)。受试者工作特征曲线下面积、敏感性和特异性的平均值(±SD)分别为 94.1(±5.14)、89.58(±6.13)和 92.62(±6.61)。

结论

这项研究表明,基于某些成像方式,AI 模型在诊断干眼症方面更准确,并表明 AI 模型在增强干眼症诊所方面具有广阔前景,可以帮助医生诊断这种眼表面疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验