Suppr超能文献

人工智能用于非黑色素瘤皮肤癌诊断的准确性:一项荟萃分析。

The accuracy of artificial intelligence used for non-melanoma skin cancer diagnoses: a meta-analysis.

机构信息

Department of Business Management, National United University, No.1, Miaoli, 360301, Lienda, Taiwan, Republic of China.

Department of Applied English, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, 84001, Kaohsiung City, Taiwan, Republic of China.

出版信息

BMC Med Inform Decis Mak. 2023 Jul 28;23(1):138. doi: 10.1186/s12911-023-02229-w.

Abstract

BACKGROUND

With rising incidence of skin cancer and relatively increased mortality rates, an improved diagnosis of such a potentially fatal disease is of vital importance. Although frequently curable, it nevertheless places a considerable burden upon healthcare systems. Among the various types of skin cancers, non-melanoma skin cancer is most prevalent. Despite such prevalence and its associated cost, scant proof concerning the diagnostic accuracy via Artificial Intelligence (AI) for non-melanoma skin cancer exists. This study meta-analyzes the diagnostic test accuracy of AI used to diagnose non-melanoma forms of skin cancer, and it identifies potential covariates that account for heterogeneity between extant studies.

METHODS

Various electronic databases (Scopus, PubMed, ScienceDirect, SpringerLink, and Dimensions) were examined to discern eligible studies beginning from March 2022. Those AI studies predictive of non-melanoma skin cancer were included. Summary estimates of sensitivity, specificity, and area under receiver operating characteristic curves were used to evaluate diagnostic accuracy. The revised Quality Assessment of Diagnostic Studies served to assess any risk of bias.

RESULTS

A literature search produced 39 eligible articles for meta-analysis. The summary sensitivity, specificity, and area under receiver operating characteristic curve of AI for diagnosing non-melanoma skin cancer was 0.78, 0.98, & 0.97, respectively. Skin cancer typology, data sources, cross validation, ensemble models, types of techniques, pre-trained models, and image augmentation became significant covariates accounting for heterogeneity in terms of both sensitivity and/or specificity.

CONCLUSIONS

Meta-analysis results revealed that AI is predictive of non-melanoma with an acceptable performance, but sensitivity may become improved. Further, ensemble models and pre-trained models are employable to improve true positive rating.

摘要

背景

随着皮肤癌发病率的上升和相对死亡率的增加,对这种潜在致命疾病的诊断水平的提高至关重要。尽管皮肤癌通常可以治愈,但它仍然给医疗保健系统带来了相当大的负担。在各种类型的皮肤癌中,非黑素瘤皮肤癌最为常见。尽管如此普遍,且相关成本高昂,但关于人工智能(AI)对非黑素瘤皮肤癌的诊断准确性的证据仍然很少。本研究通过荟萃分析来评估 AI 诊断非黑素瘤皮肤癌的诊断测试准确性,并确定导致现有研究之间存在异质性的潜在协变量。

方法

从 2022 年 3 月开始,我们检查了各种电子数据库(Scopus、PubMed、ScienceDirect、SpringerLink 和 Dimensions),以确定符合条件的研究。纳入了预测非黑素瘤皮肤癌的 AI 研究。使用汇总敏感性、特异性和接受者操作特征曲线下面积来评估诊断准确性。修订后的诊断研究质量评估用于评估任何偏倚风险。

结果

文献检索产生了 39 篇符合荟萃分析条件的文章。AI 诊断非黑素瘤皮肤癌的汇总敏感性、特异性和接受者操作特征曲线下面积分别为 0.78、0.98 和 0.97。皮肤癌类型、数据来源、交叉验证、集成模型、技术类型、预训练模型和图像增强成为影响敏感性和/或特异性的重要协变量。

结论

荟萃分析结果表明,AI 对非黑素瘤具有可接受的预测性能,但敏感性可能会提高。此外,集成模型和预训练模型可用于提高真阳性率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a6c/10375663/f966d151e3f5/12911_2023_2229_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验