Suppr超能文献

一种用于识别南非 HIV 诊断后脱离护理高风险的 HIV 感染者的风险预测模型。

A Risk Prediction Model to Identify People Living with HIV Who are High-risk for Disengagement from Care after HIV Diagnosis in South Africa.

机构信息

Analysis Group Inc., Boston, MA, USA.

Division of General Internal Medicine, Centre for Global Health, Weill Cornell Medicine, NY, USA.

出版信息

AIDS Behav. 2024 Oct;28(10):3362-3372. doi: 10.1007/s10461-024-04430-y. Epub 2024 Jul 10.

Abstract

The provision of ART in South Africa has transformed the HIV epidemic, resulting in an increase in life expectancy by over 10 years. Despite this, nearly 2 million people living with HIV are not on treatment. The objective of this study was to develop and externally validate a practical risk assessment tool to identify people with HIV (PWH) at highest risk for attrition from care after testing. A machine learning model incorporating clinical and psychosocial factors was developed in a primary cohort of 498 PWH. LASSO regression analysis was used to optimize variable selection. Multivariable logistic regression analysis was applied to build a model using 80% of the primary cohort as a training dataset and validated using the remaining 20% of the primary cohort and data from an independent cohort of 96 participants. The risk score was developed using the Sullivan and D'Agostino point based method. Of 498 participants with mean age 35.7 years, 192 (38%) did not initiate ART after diagnosis. Controlling for site, factors associated with non-engagement in care included being < 35 years, feeling abandoned by God, maladaptive coping strategies using alcohol or other drugs, no difficulty concentrating, and having high levels of confidence in one's ability to handle personal challenges. An effective risk score can enable clinicians and implementers to focus on tailoring care for those most in need of ongoing support. Further research should focus on potential strategies to enhance the generalizability and evaluate the implementation of the proposed risk prediction model in HIV treatment programs.

摘要

南非提供的抗逆转录病毒疗法(ART)改变了艾滋病的流行情况,使艾滋病患者的预期寿命延长了 10 年以上。尽管如此,仍有近 200 万艾滋病毒感染者未接受治疗。本研究的目的是开发并验证一种实用的风险评估工具,以识别在检测后因治疗而退出护理的艾滋病病毒感染者(PWH)中风险最高的人群。在一个由 498 名 PWH 组成的主要队列中,开发了一种包含临床和心理社会因素的机器学习模型。使用 LASSO 回归分析进行变量选择优化。使用主要队列的 80%作为训练数据集,对多变量逻辑回归分析进行应用,构建一个模型,并使用主要队列的其余 20%和来自 96 名独立参与者的队列数据进行验证。风险评分采用 Sullivan 和 D'Agostino 基于点的方法开发。在 498 名平均年龄为 35.7 岁的参与者中,有 192 人(38%)在诊断后未开始接受抗逆转录病毒治疗。在控制地点因素的情况下,与不参与护理相关的因素包括年龄<35 岁、感觉被上帝抛弃、使用酒精或其他药物进行适应性不良的应对策略、难以集中注意力以及对自己处理个人挑战的能力有高度信心。有效的风险评分可以使临床医生和实施者能够专注于为最需要持续支持的人量身定制护理。进一步的研究应侧重于增强通用性的潜在策略,并评估拟议的风险预测模型在艾滋病毒治疗方案中的实施情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验