Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK.
Sci Adv. 2024 Jul 12;10(28):eadn4824. doi: 10.1126/sciadv.adn4824. Epub 2024 Jul 10.
Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.
分子伴侣对于维持活细胞中的蛋白质平衡至关重要。该蛋白质家族的一个关键成员是触发因子(TF),它在蛋白质的整个生命周期中发挥作用,并且在蛋白质合成过程中作为遇到的第一个伴侣蛋白具有普遍作用。然而,我们对于 TF 如何与如此多样化的底物基底实现有利相互作用的理解仍然有限。在这里,我们使用微流控技术揭示了该过程的热力学决定因素。我们发现,TF 与空的 70S 核糖体的结合是由焓驱动的,亲和力为微摩尔级,而对于无规卷曲和折叠 competent 的新生链,通过有利的熵贡献实现纳摩尔级亲和力。这些发现为共翻译 TF 功能的一般机制提供了依据,该机制依赖于暴露的 TF-底物结合槽的占据,而不是伴侣蛋白和新生链之间的特异性互补性。这些见解增加了我们对蛋白质如何实现广泛的底物特异性的更广泛理解。