National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, School of Pharmacy, Bengbu Medical University, Bengbu 233030, China.
J Colloid Interface Sci. 2024 Dec;675:580-591. doi: 10.1016/j.jcis.2024.07.046. Epub 2024 Jul 6.
Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.
单原子纳米酶(SANZs)作为一种新的媒介,增强了化学动力学治疗(CDT)以实现理想的酶样效应和优异的纳米级特异性。然而,类芬顿反应中间体的非最佳吸附阻止了 SANZs 发挥动力学活性,并阻碍了 CDT 效应。本文中,我们证明了具有本征电荷转移的杂原子掺杂钴单原子纳米酶(SACNZs)具有过氧化物酶样特性,并显著提高了 CDT 治疗金黄色葡萄球菌感染伤口的能力。密度泛函理论计算表明,S 诱导的电荷转移效应比 P 更有效地调节中心金属的电子分布,从而降低了生成 OH 的能级并增加了催化作用。与理论一致,聚乙烯吡咯烷酮修饰的 SACNZs 在体外抗菌和体内病房管理实验中均表现出了相应的效果。本研究系统地研究了杂原子掺杂与金属中心催化活性之间的关系,为 CDT 的应用开辟了新的视角。