Suppr超能文献

调控钴单原子纳米酶的局部配位环境以增强其抗菌催化治疗效果。

Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria.

机构信息

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

出版信息

Acta Biomater. 2023 Jul 1;164:563-576. doi: 10.1016/j.actbio.2023.03.040. Epub 2023 Mar 31.

Abstract

Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the polyvinylpyrrolidone modified single-atomic Co nanozymes with nitrogen coordination numbers of 3 (PSACNZs-N-C) and 4 (PSACNZs-N-C), single-atomic Co nanozymes with a coordination number of 2 (PSACNZs-N-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (PSACNZs-N-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that PSACNZs-N-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-N-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-N-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.

摘要

单原子纳米酶(SANZ)以原子分散的单金属原子为特征,与纳米级相比,其具有令人满意的催化活性和更高的选择性,因此在生物医药领域取得了突破性进展。通过调节其配位结构可以提高 SANZ 的催化性能。因此,调节活性中心金属原子的配位数是增强催化治疗效果的一种潜在方法。在这项研究中,我们合成了具有不同氮配位数的各种原子分散 Co 纳米酶,用于过氧化物酶(POD)模拟的单原子催化抗菌治疗。在具有氮配位数为 3(PSACNZs-N-C)和 4(PSACNZs-N-C)的聚乙烯吡咯烷酮修饰的单原子 Co 纳米酶中,具有配位数为 2(PSACNZs-N-C)的单原子 Co 纳米酶具有最高的 POD 样催化活性。动力学测定和密度泛函理论(DFT)计算表明,降低配位数可以降低单原子 Co 纳米酶(PSACNZs-N-C)的反应能垒,从而提高其催化性能。体外和体内抗菌试验表明 PSACNZs-N-C 的抗菌效果最好。这项研究为通过调节配位数来增强单原子催化治疗提供了概念验证,可应用于肿瘤治疗和伤口消毒等各种生物医学领域。

意义声明

含有单原子催化位点的纳米酶被证明可以通过表现出过氧化物酶样活性来有效促进细菌感染伤口的愈合。催化位点的均匀配位环境与高抗菌活性有关,这为设计新的活性结构和理解其作用机制提供了启示。在这项研究中,我们通过剪切 Co-N 键并用聚乙烯吡咯烷酮(PVP)修饰设计了一系列具有不同配位环境的钴单原子纳米酶(PSACNZs-N-C)。合成的 PSACNZs-N-C 对革兰氏阳性和革兰氏阴性细菌菌株表现出增强的抗菌活性,并且在体内和体外实验中均表现出良好的生物相容性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验