文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脑干多巴胺β-羟化酶神经元控制变应原诱导的气道高反应性。

Brainstem Dbh neurons control allergen-induced airway hyperreactivity.

作者信息

Su Yujuan, Xu Jinhao, Zhu Ziai, Chin Jisun, Xu Le, Yu Haoze, Nudell Victoria, Dash Barsha, Moya Esteban A, Ye Li, Nimmerjahn Axel, Sun Xin

机构信息

Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.

Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA.

出版信息

Nature. 2024 Jul;631(8021):601-609. doi: 10.1038/s41586-024-07608-5. Epub 2024 Jul 10.


DOI:10.1038/s41586-024-07608-5
PMID:38987587
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11254774/
Abstract

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.

摘要

反复接触过敏原引发的气道过度收缩,也称为高反应性,是哮喘的一个标志。虽然已知迷走感觉神经元在过敏原诱导的高反应性中发挥作用,但下游节点的身份仍知之甚少。在这里,我们绘制了一条从肺到脑干再回到肺的完整过敏原通路。将小鼠反复暴露于吸入的过敏原中,以肥大细胞、白细胞介素-4(IL-4)和迷走神经依赖的方式激活孤束核(nTS)神经元的细胞核。单核RNA测序,随后在基线和过敏原刺激下进行RNAscope分析,结果显示Dbh nTS群体被优先激活。Dbh nTS神经元的消融或化学遗传失活减弱了高反应性,而化学遗传激活则增强了高反应性。病毒示踪表明,Dbh nTS神经元投射到疑核(NA),并且NA神经元对于将过敏原信号传递给直接驱动气道收缩的节后神经元是必要且充分的。向NA递送去甲肾上腺素拮抗剂减弱了高反应性,表明去甲肾上腺素是Dbh nTS和NA之间的神经递质。总之,这些发现提供了经典过敏原反应通路关键节点的分子、解剖和功能定义。这些知识为如何利用神经调节来控制过敏原诱导的气道高反应性提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/7afb9e8a2be5/41586_2024_7608_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/e68ccb4c66da/41586_2024_7608_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/6a5a9bb9881a/41586_2024_7608_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/2ccbe93e39c7/41586_2024_7608_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/b94ac7d46157/41586_2024_7608_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/db5dd045e25f/41586_2024_7608_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/bc509300f721/41586_2024_7608_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/3604d3114230/41586_2024_7608_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/6825a42e89e2/41586_2024_7608_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/c3e4a38e97b7/41586_2024_7608_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/fa8622bbc5b5/41586_2024_7608_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/4e083740d301/41586_2024_7608_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/0d13b92520e6/41586_2024_7608_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/8a369d15b4e1/41586_2024_7608_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/184752f12c12/41586_2024_7608_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/1c8a47fe3bf9/41586_2024_7608_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/7afb9e8a2be5/41586_2024_7608_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/e68ccb4c66da/41586_2024_7608_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/6a5a9bb9881a/41586_2024_7608_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/2ccbe93e39c7/41586_2024_7608_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/b94ac7d46157/41586_2024_7608_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/db5dd045e25f/41586_2024_7608_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/bc509300f721/41586_2024_7608_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/3604d3114230/41586_2024_7608_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/6825a42e89e2/41586_2024_7608_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/c3e4a38e97b7/41586_2024_7608_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/fa8622bbc5b5/41586_2024_7608_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/4e083740d301/41586_2024_7608_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/0d13b92520e6/41586_2024_7608_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/8a369d15b4e1/41586_2024_7608_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/184752f12c12/41586_2024_7608_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/1c8a47fe3bf9/41586_2024_7608_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/11254774/7afb9e8a2be5/41586_2024_7608_Fig16_ESM.jpg

相似文献

[1]
Brainstem Dbh neurons control allergen-induced airway hyperreactivity.

Nature. 2024-7

[2]
Brainstem Neurons Control Chronic Allergen-Induced Airway Hyperreactivity.

bioRxiv. 2024-2-14

[3]
Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex.

Am J Physiol. 1997-1

[4]
The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat.

Neuroscience. 1994-2

[5]
Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells.

J Immunol. 1999-8-15

[6]
Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

Am J Physiol Heart Circ Physiol. 2017-8-1

[7]
Poly(ADP-ribose) polymerase inhibition with HYDAMTIQ reduces allergen-induced asthma-like reaction, bronchial hyper-reactivity and airway remodelling.

J Cell Mol Med. 2014-3

[8]
Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice.

Mol Med. 1998-5

[9]
Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes.

J Comp Neurol. 1985-3-15

[10]
Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice.

Am J Respir Crit Care Med. 2004-4-1

引用本文的文献

[1]
Connection and communication between the nervous and immune systems.

Nat Rev Immunol. 2025-7-10

[2]
Allergen induces pulmonary neuroendocrine cell hyperplasia in a model of asthma.

JCI Insight. 2025-7-8

[3]
Molecular and functional diversity of the autonomic nervous system.

Nat Rev Neurosci. 2025-7-3

[4]
Direct vagal input to the gastrointestinal tract and other viscera: Re-definition of autonomic neuroscience or experimental artifacts?

Auton Neurosci. 2025-8

[5]
Bibliometric Analysis on the Central Regulation of Airway Allergic Hyperreactivity Diseases Based on Bibliometric Analysis: From Lung-Brain Axis to Nasal-Brain Axis.

J Asthma Allergy. 2025-5-31

[6]
From sensation to regulation: the diverse functions of peripheral sensory nervous system.

Front Immunol. 2025-5-16

[7]
Decoding mechanisms and protein markers in lung-brain axis.

Respir Res. 2025-5-19

[8]
The vagus nerve-dependent lung-brain axis mediates brain demyelination following acute lung injury.

Brain Behav Immun Health. 2025-2-11

[9]
Novel insights into the study of goblet cell hypersecretion in allergic rhinitis.

Front Immunol. 2025-1-31

[10]
The neuroimmune connectome in health and disease.

Nature. 2025-2

本文引用的文献

[1]
Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.

Nat Methods. 2023-9

[2]
Brainstem ADCYAP1 neurons control multiple aspects of sickness behaviour.

Nature. 2022-9

[3]
A brainstem map for visceral sensations.

Nature. 2022-9

[4]
Genetic encoding of an esophageal motor circuit.

Cell Rep. 2022-6-14

[5]
Molecularly defined circuits for cardiovascular and cardiopulmonary control.

Nature. 2022-6

[6]
A multidimensional coding architecture of the vagal interoceptive system.

Nature. 2022-3

[7]
A census of the lung: CellCards from LungMAP.

Dev Cell. 2022-1-10

[8]
Identification of lung innervating sensory neurons and their target specificity.

Am J Physiol Lung Cell Mol Physiol. 2022-1-1

[9]
Highly selective brain-to-gut communication via genetically defined vagus neurons.

Neuron. 2021-7-7

[10]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索