Suppr超能文献

基于孕激素预处理卵巢刺激的卵巢反应不良患者中高质量胚胎形成的机器学习预测模型的构建。

The construction of machine learning-based predictive models for high-quality embryo formation in poor ovarian response patients with progestin-primed ovarian stimulation.

机构信息

Chongqing Medical University, Chongqing, 400016, China.

Department of Laboratory, Chongqing General Hospital, Chongqing, 401121, China.

出版信息

Reprod Biol Endocrinol. 2024 Jul 10;22(1):78. doi: 10.1186/s12958-024-01251-5.

Abstract

OBJECTIVE

To explore the optimal models for predicting the formation of high-quality embryos in Poor Ovarian Response (POR) Patients with Progestin-Primed Ovarian Stimulation (PPOS) using machine learning algorithms.

METHODS

A retrospective analysis was conducted on the clinical data of 4,216 POR cycles who underwent in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) at Sichuan Jinxin Xinan Women and Children's Hospital from January 2015 to December 2021. Based on the presence of high-quality cleavage embryos 72 h post-fertilization, the samples were divided into the high-quality cleavage embryo group (N = 1950) and the non-high-quality cleavage embryo group (N = 2266). Additionally, based on whether high-quality blastocysts were observed following full blastocyst culture, the samples were categorized into the high-quality blastocyst group (N = 124) and the non-high-quality blastocyst group (N = 1800). The factors influencing the formation of high-quality embryos were analyzed using logistic regression. The predictive models based on machine learning methods were constructed and evaluated accordingly.

RESULTS

Differential analysis revealed that there are statistically significant differences in 14 factors between high-quality and non-high-quality cleavage embryos. Logistic regression analysis identified 14 factors as influential in forming high-quality cleavage embryos. In models excluding three variables (retrieved oocytes, MII oocytes, and 2PN fertilized oocytes), the XGBoost model performed slightly better (AUC = 0.672, 95% CI = 0.636-0.708). Conversely, in models including these three variables, the Random Forest model exhibited the best performance (AUC = 0.788, 95% CI = 0.759-0.818). In the analysis of high-quality blastocysts, significant differences were found in 17 factors. Logistic regression analysis indicated that 13 factors influence the formation of high-quality blastocysts. Including these variables in the predictive model, the XGBoost model showed the highest performance (AUC = 0.813, 95% CI = 0.741-0.884).

CONCLUSION

We developed a predictive model for the formation of high-quality embryos using machine learning methods for patients with POR undergoing treatment with the PPOS protocol. This model can help infertility patients better understand the likelihood of forming high-quality embryos following treatment and help clinicians better understand and predict treatment outcomes, thus facilitating more targeted and effective interventions.

摘要

目的

利用机器学习算法探索孕激素预处理卵巢刺激(PPOS)方案下卵巢反应不良(POR)患者中预测高质量胚胎形成的最佳模型。

方法

对 2015 年 1 月至 2021 年 12 月在四川锦欣西南妇女儿童医院接受体外受精/胞浆内单精子注射(IVF/ICSI)的 4216 个 POR 周期的临床数据进行回顾性分析。根据受精后 72 小时出现高质量卵裂胚胎的情况,将样本分为高质量卵裂胚胎组(N=1950)和非高质量卵裂胚胎组(N=2266)。此外,根据完全囊胚培养后是否观察到高质量囊胚,将样本分为高质量囊胚组(N=124)和非高质量囊胚组(N=1800)。使用逻辑回归分析影响高质量胚胎形成的因素。基于机器学习方法构建预测模型并进行相应评估。

结果

差异分析显示,高质量和非高质量卵裂胚胎之间在 14 个因素上存在统计学显著差异。逻辑回归分析确定了 14 个因素对形成高质量卵裂胚胎有影响。在排除三个变量(回收卵母细胞、MII 卵母细胞和 2PN 受精卵母细胞)的模型中,XGBoost 模型的性能略好(AUC=0.672,95%CI=0.636-0.708)。相反,在包括这三个变量的模型中,随机森林模型表现最佳(AUC=0.788,95%CI=0.759-0.818)。在高质量囊胚分析中,在 17 个因素上发现了显著差异。逻辑回归分析表明,13 个因素影响高质量囊胚的形成。在预测模型中包含这些变量时,XGBoost 模型表现最佳(AUC=0.813,95%CI=0.741-0.884)。

结论

我们使用机器学习方法为接受孕激素预处理卵巢刺激(PPOS)方案治疗的 POR 患者开发了一种预测高质量胚胎形成的模型。该模型可以帮助不孕患者更好地了解治疗后形成高质量胚胎的可能性,并帮助临床医生更好地了解和预测治疗结果,从而促进更有针对性和有效的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ef8/11234746/78636ff01677/12958_2024_1251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验