Hartnagel Lisa-Marie, Ebner-Priemer Ulrich W, Foo Jerome C, Streit Fabian, Witt Stephanie H, Frank Josef, Limberger Matthias F, Horn Andrea B, Gilles Maria, Rietschel Marcella, Sirignano Lea
Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
Acta Psychiatr Scand. 2025 Mar;151(3):348-357. doi: 10.1111/acps.13726. Epub 2024 Jul 10.
Digital phenotyping and monitoring tools are the most promising approaches to automatically detect upcoming depressive episodes. Especially, linguistic style has been seen as a potential behavioral marker of depression, as cross-sectional studies showed, for example, less frequent use of positive emotion words, intensified use of negative emotion words, and more self-references in patients with depression compared to healthy controls. However, longitudinal studies are sparse and therefore it remains unclear whether within-person fluctuations in depression severity are associated with individuals' linguistic style.
To capture affective states and concomitant speech samples longitudinally, we used an ambulatory assessment approach sampling multiple times a day via smartphones in patients diagnosed with depressive disorder undergoing sleep deprivation therapy. This intervention promises a rapid change of affective symptoms within a short period of time, assuring sufficient variability in depressive symptoms. We extracted word categories from the transcribed speech samples using the Linguistic Inquiry and Word Count.
Our analyses revealed that more pleasant affective momentary states (lower reported depression severity, lower negative affective state, higher positive affective state, (positive) valence, energetic arousal and calmness) are mirrored in the use of less negative emotion words and more positive emotion words.
We conclude that a patient's linguistic style, especially the use of positive and negative emotion words, is associated with self-reported affective states and thus is a promising feature for speech-based automated monitoring and prediction of upcoming episodes, ultimately leading to better patient care.
数字表型分析和监测工具是自动检测即将到来的抑郁发作最有前景的方法。特别是,语言风格已被视为抑郁症的一种潜在行为标志物,例如横断面研究表明,与健康对照相比,抑郁症患者使用积极情绪词汇的频率较低,消极情绪词汇的使用增加,且更多地提及自我。然而,纵向研究较少,因此尚不清楚抑郁严重程度的个体内部波动是否与个体的语言风格相关。
为了纵向捕捉情感状态和伴随的语音样本,我们采用了一种动态评估方法,通过智能手机对接受睡眠剥夺治疗的抑郁症患者进行一天多次采样。这种干预有望在短时间内使情感症状迅速改变,确保抑郁症状有足够的变异性。我们使用语言查询与字数统计从转录的语音样本中提取单词类别。
我们的分析表明,更愉悦的情感瞬时状态(报告的抑郁严重程度较低、消极情感状态较低、积极情感状态较高、(积极)效价、精力充沛的唤醒和平静)反映在使用较少的消极情绪词汇和较多的积极情绪词汇上。
我们得出结论,患者的语言风格,尤其是积极和消极情绪词汇的使用,与自我报告的情感状态相关,因此是基于语音的即将发作的自动监测和预测的一个有前景的特征,最终可实现更好的患者护理。