ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR5182, Lyon, France.
Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice, France; Institut Universitaire de France, Paris, France.
Biophys J. 2024 Sep 17;123(18):3100-3106. doi: 10.1016/j.bpj.2024.07.009. Epub 2024 Jul 10.
Guanine radical cations are precursors to oxidatively induced DNA lesions, and the determination of oxidative DNA hot spots beyond oligonucleotides remains a current challenge. In order to rationalize the finetuned ionization properties of the ∼60 guanines in a nucleosome core particle, we report a robust molecular dynamics-then-FO-DFTB/MM (fragment-orbital tight-binding density functional theory/molecular mechanics) simulation protocol spanning 20 μs. Our work allows us to identify several factors governing guanine ionization potential and map oxidative hotspots. Our results highlight the predominant role of the proximity of positively charged histone residues in the modulation of the guanine ionization potential up to 0.6 eV. Consequently, fast, long-range hole transfer in nucleosomal DNA could be tuned by the proximity of histone tails, which differs, from a biological point of view, on the chromatin state.
鸟嘌呤自由基阳离子是氧化诱导 DNA 损伤的前体,而确定寡核苷酸以外的氧化 DNA 热点仍然是当前的挑战。为了使核小体核心颗粒中约 60 个鸟嘌呤的精细离子化特性合理化,我们报告了一个稳健的分子动力学-然后-FO-DFTB/MM(片段轨道紧束缚密度泛函理论/分子力学)模拟方案,跨度为 20 μs。我们的工作使我们能够确定几个因素来控制鸟嘌呤的电离能,并绘制氧化热点图。我们的结果强调了带正电荷的组蛋白残基的接近性在调节鸟嘌呤电离能高达 0.6 eV 方面的主要作用。因此,核小体 DNA 中的快速、长程空穴转移可以通过组蛋白尾巴的接近性来调节,从生物学角度来看,这在染色质状态上是不同的。