Yamada Seiya, Mizukoshi Tomoya, Sato Ayaka, Sakakibara Shin-Ichi
Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan.
Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
Acta Histochem Cytochem. 2024 Jun 28;57(3):89-100. doi: 10.1267/ahc.24-00027. Epub 2024 Jun 22.
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: synthesis and salvage synthesis. Enzymes driving pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the pathway to the salvage pathway. Inhibiting the pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
特定脑区的神经干细胞/祖细胞(NSPCs)在关键发育阶段需要精确调控代谢物的产生。嘌呤是DNA、RNA以及ATP和GTP等能量载体的重要组成部分,是脑发育中的关键代谢物。嘌呤水平通过两条途径严格控制:合成途径和补救合成途径。驱动这些途径的酶组装成一个称为“嘌呤体”的大型多酶复合物。在这里,我们综述嘌呤代谢和嘌呤体作为神经发育的时空调节因子。值得注意的是,在小鼠皮质发育的出生后第0天(P0)左右,嘌呤合成从合成途径转变为补救途径。抑制合成途径会影响mTORC1途径并导致特定的前脑畸形。在本综述中,我们还探讨了一种新鉴定的NSPC蛋白——含NACHT和WD重复结构域1(Nwd1)——在嘌呤体形成中的蛋白质-蛋白质相互作用的重要性。Nwd1表达降低会破坏嘌呤体形成,影响NSPC增殖和神经元迁移,导致脑室周围异位。Nwd1直接与参与嘌呤合成的磷酸核糖氨基咪唑-琥珀酰胺羧酰胺合成酶(PAICS)相互作用。我们预计本综述将对研究神经发育、嘌呤代谢和蛋白质-蛋白质相互作用的研究人员有价值。