Suppr超能文献

使用全景颞下颌关节投影图像诊断牙颌面畸形患者髁突骨关节炎的深度学习分类性能。

Deep learning classification performance for diagnosing condylar osteoarthritis in patients with dentofacial deformities using panoramic temporomandibular joint projection images.

机构信息

Department of Oral and Maxillofacial Radiology, Aichi Gakuin University School of Dentistry, 2-11 Suemori-Dori, Chikusa-Ku, Nagoya, 464-8651, Japan.

Department of Oral Radiology, School of Dentistry, Osaka Dental University, Osaka, Japan.

出版信息

Oral Radiol. 2024 Oct;40(4):538-545. doi: 10.1007/s11282-024-00768-0. Epub 2024 Jul 11.

Abstract

OBJECTIVE

The present study aimed to assess the consistencies and performances of deep learning (DL) models in the diagnosis of condylar osteoarthritis (OA) among patients with dentofacial deformities using panoramic temporomandibular joint (TMJ) projection images.

METHODS

A total of 68 TMJs with or without condylar OA in dentofacial deformity patients were tested to verify the consistencies and performances of DL models created using 252 TMJs with or without OA in TMJ disorder and dentofacial deformity patients; these models were used to diagnose OA on conventional panoramic (Con-Pa) images and open (Open-TMJ) and closed (Closed-TMJ) mouth TMJ projection images. The GoogLeNet and VGG-16 networks were used to create the DL models. For comparison, two dental residents with < 1 year of experience interpreting radiographs evaluated the same condyle data that had been used to test the DL models.

RESULTS

On Open-TMJ images, the DL models showed moderate to very good consistency, whereas the residents' demonstrated fair consistency on all images. The areas under the curve (AUCs) of both DL models on Con-Pa (0.84 for GoogLeNet and 0.75 for VGG-16) and Open-TMJ images (0.89 for both models) were significantly higher than the residents' AUCs (p < 0.01). The AUCs of the DL models on Open-TMJ images (0.89 for both models) were higher than the AUCs on Closed-TMJ images (0.72 for both models).

CONCLUSIONS

The DL models created in this study could help residents to interpret Con-Pa and Open-TMJ images in the diagnosis of condylar OA.

摘要

目的

本研究旨在评估深度学习(DL)模型在使用全景颞下颌关节(TMJ)投影图像诊断牙颌面畸形患者髁状突骨关节炎(OA)中的一致性和性能。

方法

共检测了 68 个 TMJ,其中包括牙颌面畸形患者中伴或不伴髁状突 OA 的 TMJ,以验证使用 252 个伴或不伴 TMJ 紊乱和牙颌面畸形患者中 OA 的 TMJ 建立的 DL 模型的一致性和性能;这些模型用于诊断常规全景(Con-Pa)图像和开口(Open-TMJ)及闭口(Closed-TMJ)TMJ 投影图像中的 OA。使用 GoogLeNet 和 VGG-16 网络创建 DL 模型。为了进行比较,两名具有<1 年阅片经验的牙科住院医师评估了相同的用于测试 DL 模型的髁状突数据。

结果

在 Open-TMJ 图像上,DL 模型显示出中度至非常好的一致性,而住院医师在所有图像上显示出公平的一致性。DL 模型在 Con-Pa 上的曲线下面积(AUC)(GoogLeNet 为 0.84,VGG-16 为 0.75)和 Open-TMJ 图像(两个模型均为 0.89)均显著高于住院医师的 AUC(p<0.01)。DL 模型在 Open-TMJ 图像上的 AUC(两个模型均为 0.89)高于在 Closed-TMJ 图像上的 AUC(两个模型均为 0.72)。

结论

本研究中创建的 DL 模型可以帮助住院医师诊断 Con-Pa 和 Open-TMJ 图像中的髁状突 OA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验