Suppr超能文献

使用来自两家医院的全景片构建的深度学习模型诊断下颌骨髁突骨折的性能。

Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle.

机构信息

Department of Oral and Maxillofacial Radiology, Aichi Gakuin University School of Dentistry, Nagoya, Japan.

Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Japan.

出版信息

Dentomaxillofac Radiol. 2021 Oct 1;50(7):20200611. doi: 10.1259/dmfr.20200611. Epub 2021 Mar 26.

Abstract

OBJECTIVE

The present study aimed to verify the classification performance of deep learning (DL) models for diagnosing fractures of the mandibular condyle on panoramic radiographs using data sets from two hospitals and to compare their internal and external validities.

METHODS

Panoramic radiographs of 100 condyles with and without fractures were collected from two hospitals and a fivefold cross-validation method was employed to construct and evaluate the DL models. The internal and external validities of classification performance were evaluated as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).

RESULTS

For internal validity, high classification performance was obtained, with AUC values of >0.85. Conversely, external validity for the data sets from the two hospitals exhibited low performance. Using combined data sets from both hospitals, the DL model exhibited high performance, which was slightly superior or equal to that of the internal validity but without a statistically significant difference.

CONCLUSION

The constructed DL model can be clinically employed for diagnosing fractures of the mandibular condyle using panoramic radiographs. However, the domain shift phenomenon should be considered when generalizing DL systems.

摘要

目的

本研究旨在验证深度学习(DL)模型在使用来自两家医院的数据集诊断下颌骨髁突骨折方面的分类性能,并比较其内部和外部有效性。

方法

从两家医院收集了 100 个有和没有骨折的髁突全景片,并采用五重交叉验证方法构建和评估 DL 模型。分类性能的内部和外部有效性评估为准确性、敏感性、特异性和接收者操作特征曲线(AUC)下的面积。

结果

对于内部有效性,获得了高分类性能,AUC 值>0.85。相反,来自两家医院的数据集的外部有效性表现不佳。使用来自两家医院的组合数据集,DL 模型表现出了高性能,略优于或等同于内部有效性,但无统计学差异。

结论

构建的 DL 模型可用于临床使用全景片诊断下颌骨髁突骨折。然而,在推广 DL 系统时应考虑领域转移现象。

相似文献

引用本文的文献

本文引用的文献

6
Imaging of mandibular fractures: a pictorial review.下颌骨骨折的影像学检查:图文综述
Insights Imaging. 2020 Feb 19;11(1):30. doi: 10.1186/s13244-020-0837-0.
7
Preparing Medical Imaging Data for Machine Learning.医学影像数据的机器学习准备
Radiology. 2020 Apr;295(1):4-15. doi: 10.1148/radiol.2020192224. Epub 2020 Feb 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验