Suppr超能文献

科威特城市固体废物特征:特定部门成分分析及影响。

Characterization of municipal solid waste in Kuwait: Sector-specific composition analysis and implications.

机构信息

Industrial and Management Systems Engineering Department, Kuwait University, Safat, Kuwait.

Civil Engineering Department, Kuwait University, Safat, Kuwait.

出版信息

J Air Waste Manag Assoc. 2024 Sep;74(9):623-638. doi: 10.1080/10962247.2024.2378102. Epub 2024 Jul 31.

Abstract

Municipal solid waste (MSW) characterization plays a pivotal role in devising effective waste management strategies conducive to fostering a circular economy. This study presents composition analysis across twenty-four subcategories sourced from residential, commercial, and industrial sectors in Kuwait. The study is conducted in accordance with the Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste (ASTM D5231). The results indicate that organic waste comprises 45.3%, followed by paper waste (19.9%) and plastics (19.8%). The remaining waste comprises glass waste (3.5%), diapers (2.7%), textiles (2.6%) and other waste. Paper waste (19.9%) consists mainly of mixed paper (12.1%), cardboard (3.7%), newspaper (3.3%), printer printouts (0.6%) and other office paper (0.2%). Plastic waste (19.8%) consists mainly of film (11.2%), PET (3.1%), HDPE (1.1%) and other mixed plastics (4.4%). Residential and mixed areas have the highest proportion of organic waste. Commercial areas produce the highest proportion of wastepaper (22.4%) and textiles (3.7%). Industrial areas produce the highest proportion of plastic waste (29.1%), most of which is film (17.3%). The study also provides an overview of the MSW management system in the country, an overview over the legislative framework, and forecasts of future waste generation rates with comparison to historical baselines.: The precise and up-to-date characterization of municipal solid waste is imperative for scholarly journal submissions, as it establishes a foundational understanding of waste composition, aiding researchers and policymakers in the development of effective waste management strategies, resource recovery initiatives, and sustainable solutions to address the evolving challenges in waste management systems.This study provides detailed composition analysis for twenty-four municipal solid waste (MSW) subcategories collected across different sources: residential, commercial, industrial, and mixed areas. Time series forecasting is applied to predict MSW generation based on historical data obtained through the local municipality over the past decade. Factorial analysis is applied to investigate changes across source areas, and a hypothesis test is used to compare the current MSW composition against previous baselines. The results demonstrated significant variation across most waste categories. The plastic waste proportion has increased by 48.5% compared to 2013 data, despite awareness campaigns. Paper waste has also increased in proportion from 6.8% to 16.2%; this increase is associated with the mixed paper subcategory, which is mostly used for packaging. The composition data provided in this study are necessary for long-term monitoring, strategy assessment, and legislation associated with waste reduction and remediation.

摘要

城市固体废物(MSW)特性分析在制定有利于促进循环经济的有效废物管理策略方面发挥着关键作用。本研究对科威特住宅、商业和工业领域的 24 个亚类的组成进行了分析。该研究是根据未加工城市固体废物成分的标准测试方法进行的(ASTM D5231)。结果表明,有机废物占 45.3%,其次是纸废物(19.9%)和塑料(19.8%)。其余废物包括玻璃废物(3.5%)、尿布(2.7%)、纺织品(2.6%)和其他废物。纸废物(19.9%)主要由混合纸(12.1%)、纸板(3.7%)、报纸(3.3%)、打印机打印输出(0.6%)和其他办公用纸(0.2%)组成。塑料废物(19.8%)主要由薄膜(11.2%)、PET(3.1%)、HDPE(1.1%)和其他混合塑料(4.4%)组成。住宅和混合地区的有机废物比例最高。商业地区产生的废纸(22.4%)和纺织品(3.7%)比例最高。工业地区产生的塑料废物比例最高(29.1%),其中大部分是薄膜(17.3%)。该研究还概述了该国的城市固体废物管理系统,概述了立法框架,并预测了未来的废物产生率与历史基线相比。准确、最新的城市固体废物特性分析对于学术期刊投稿至关重要,因为它建立了对废物组成的基本理解,有助于研究人员和政策制定者制定有效的废物管理策略、资源回收计划以及解决废物管理系统中不断变化的挑战的可持续解决方案。本研究对来自不同来源的 24 种城市固体废物(MSW)亚类进行了详细的成分分析:住宅、商业、工业和混合区。时间序列预测应用于根据过去十年当地市政府获得的历史数据预测 MSW 的产生。因子分析用于调查来源区域的变化,假设检验用于比较当前的 MSW 组成与以前的基线。结果表明,大多数废物类别存在显著差异。尽管开展了宣传活动,但与 2013 年的数据相比,塑料废物的比例增加了 48.5%。纸废物的比例也从 6.8%增加到 16.2%;这一增加与主要用于包装的混合纸亚类有关。本研究提供的组成数据对于长期监测、策略评估以及与废物减少和补救相关的立法是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验