Wang Jiquan, Zhao Sha, Jiang Haiteng, Zhou Yangxuan, Yu Zhenghe, Li Tao, Li Shijian, Pan Gang
IEEE J Biomed Health Inform. 2024 Dec;28(12):7392-7405. doi: 10.1109/JBHI.2024.3426939. Epub 2024 Dec 5.
Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.
睡眠分期对于睡眠评估至关重要,并且在疾病诊断中发挥着重要作用,它指的是将睡眠时段分类为不同的睡眠阶段。多导睡眠图(PSG)由许多不同的生理信号组成,例如脑电图(EEG)和眼电图(EOG),是睡眠分期的金标准。尽管现有研究在基于PSG的自动睡眠分期方面取得了很高的性能,但仍存在一些局限性:1)它们关注局部特征而忽略了每个睡眠时段内的全局特征,2)它们忽略了EEG和EOG之间的跨模态上下文关系。在本文中,我们提出了CareSleepNet,一种用于从PSG记录中进行自动睡眠分期的新型混合深度学习网络。具体来说,我们首先设计了一个多尺度卷积-Transformer时段编码器,以对每个睡眠时段内的局部显著波形特征和全局特征进行编码。然后,我们基于协同注意力机制设计了一个跨模态上下文编码器,以对不同模态之间的跨模态上下文关系进行建模。接下来,我们使用基于Transformer的序列编码器来捕获睡眠时段之间的顺序关系。最后,将学习到的特征表示输入到时段级分类器中以确定睡眠阶段。我们收集了一个私人睡眠数据集SSND,并使用两个公共数据集Sleep-EDF-153和ISRUC来评估CareSleepNet的性能。实验结果表明,我们的CareSleepNet在这三个数据集上都取得了最优性能。此外,我们进行了消融研究和注意力可视化,以证明每个模块的有效性并分析每个模态的影响。