Hartung Lukas, Seubert Matthias, Welte Stephan, Distante Emanuele, Rempe Gerhard
Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland.
Science. 2024 Jul 12;385(6705):179-183. doi: 10.1126/science.ado6471. Epub 2024 Jul 11.
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics. However, scalability to larger systems with many qubits is challenging. One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits that are reversibly interfaced to communication qubits. In this study, we report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity. Harnessing a single atom-addressing beam, we stimulate the emission of a photon from each atom and demonstrate multiplexed atom-photon entanglement with a generation-to-detection efficiency approaching 90%. Combined with cavity-mediated quantum logic, our approach provides a possible route to distributed quantum information processing.
量子计算和量子通信有望为用户提供经典物理学无法实现的能力。然而,扩展到具有多个量子比特的更大系统具有挑战性。一种解决方案是开发一个量子网络,该网络由包含计算量子比特的小规模量子寄存器组成,这些计算量子比特与通信量子比特可逆连接。在本研究中,我们报告了一种寄存器,它使用光镊和光学晶格在光学腔中确定性地组装二维原子阵列。利用单个原子寻址光束,我们刺激每个原子发射光子,并展示了生成到检测效率接近90%的多路复用原子-光子纠缠。结合腔介导的量子逻辑,我们的方法为分布式量子信息处理提供了一条可能的途径。