Suppr超能文献

基于群组的轨迹建模方法在老年人群中长期疾病积累和死亡率的轨迹研究:来自英国老龄化纵向研究。

Trajectories in long-term condition accumulation and mortality in older adults: a group-based trajectory modelling approach using the English Longitudinal Study of Ageing.

机构信息

Primary Care Research Centre, University of Southampton, Southampton, UK.

Queen Mary University of London, London, UK.

出版信息

BMJ Open. 2024 Jul 11;14(7):e074902. doi: 10.1136/bmjopen-2023-074902.

Abstract

OBJECTIVES

To classify older adults into clusters based on accumulating long-term conditions (LTC) as trajectories, characterise clusters and quantify their associations with all-cause mortality.

DESIGN

We conducted a longitudinal study using the English Longitudinal Study of Ageing over 9 years (n=15 091 aged 50 years and older). Group-based trajectory modelling was used to classify people into clusters based on accumulating LTC over time. Derived clusters were used to quantify the associations between trajectory memberships, sociodemographic characteristics and all-cause mortality by conducting regression models.

RESULTS

Five distinct clusters of accumulating LTC trajectories were identified and characterised as: 'no LTC' (18.57%), 'single LTC' (31.21%), 'evolving multimorbidity' (25.82%), 'moderate multimorbidity' (17.12%) and 'high multimorbidity' (7.27%). Increasing age was consistently associated with a larger number of LTCs. Ethnic minorities (adjusted OR=2.04; 95% CI 1.40 to 3.00) were associated with the 'high multimorbidity' cluster. Higher education and paid employment were associated with a lower likelihood of progression over time towards an increased number of LTCs. All the clusters had higher all-cause mortality than the 'no LTC' cluster.

CONCLUSIONS

The development of multimorbidity in the number of conditions over time follows distinct trajectories. These are determined by non-modifiable (age, ethnicity) and modifiable factors (education and employment). Stratifying risk through clustering will enable practitioners to identify older adults with a higher likelihood of worsening LTC over time to tailor effective interventions to prevent mortality.

摘要

目的

根据长期疾病(LTC)的积累轨迹将老年人分为不同的群组,描述群组的特征,并量化它们与全因死亡率的关联。

设计

我们使用英国老龄化纵向研究进行了一项为期 9 年的纵向研究(年龄在 50 岁及以上的 15091 人)。基于群组轨迹建模,根据随时间积累的 LTC 将人群分为不同的群组。通过回归模型,使用衍生的群组来量化轨迹成员身份、社会人口特征与全因死亡率之间的关联。

结果

确定并描述了五种不同的 LTC 积累轨迹群组,分别为:“无 LTC”(18.57%)、“单一 LTC”(31.21%)、“不断演变的多种疾病”(25.82%)、“中度多种疾病”(17.12%)和“高度多种疾病”(7.27%)。年龄的增加与更多的 LTC 始终相关。少数民族(调整后的 OR=2.04;95%CI 1.40 至 3.00)与“高度多种疾病”群组相关。较高的教育程度和有薪就业与随着时间的推移向增加 LTC 数量的进展减少的可能性相关。所有群组的全因死亡率均高于“无 LTC”群组。

结论

随着时间的推移,多种疾病数量的发展遵循不同的轨迹。这些轨迹由不可改变的因素(年龄、种族)和可改变的因素(教育和就业)决定。通过聚类对风险进行分层,使从业者能够识别出随着时间推移 LTC 恶化可能性更高的老年人,以便针对这些患者制定有效的干预措施来预防死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a1/11243147/d6f5dacec4ba/bmjopen-14-7-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验