文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数 MRI 的放射组学模型在三阴性乳腺癌新辅助全身治疗早期反应预测中的应用。

Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.

机构信息

Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, # 1473, Houston, TX, 77030, USA.

Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Sci Rep. 2024 Jul 12;14(1):16073. doi: 10.1038/s41598-024-66220-9.


DOI:10.1038/s41598-024-66220-9
PMID:38992094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11239818/
Abstract

Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.

摘要

三阴性乳腺癌(TNBC)常采用新辅助全身治疗(NAST)。我们研究了基于 NAST 早期获得的多参数磁共振成像(MRI)的放射组学模型是否可以预测病理完全缓解(pCR)。共纳入 163 例 I-III 期 TNBC 患者,基线及 NAST 第 2 周期(C2)和第 4 周期后均行多参数 MRI 检查。78 例(48%)患者达到 pCR,85 例(52%)未达到 pCR。结合动态对比增强 MRI 和弥散加权成像的放射组学特征的 36 个多变量模型的受试者工作特征曲线下面积(AUC)>0.7。表现最好的模型结合了 C2 与基线之间的 35 个相对差异的放射组学特征,在训练集中 AUC 值为 0.905,在测试集中 AUC 值为 0.802。两位读者对 pCR 预测模型的一致性高,AUC 值也非常相似。我们的数据支持基于多参数 MRI 的放射组学模型用于早期预测 TNBC 的 NAST 反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/ea39ec068b85/41598_2024_66220_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/59b5eb2a2680/41598_2024_66220_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/9a3844facb14/41598_2024_66220_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/9d13b22c8f84/41598_2024_66220_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/ea39ec068b85/41598_2024_66220_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/59b5eb2a2680/41598_2024_66220_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/9a3844facb14/41598_2024_66220_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/9d13b22c8f84/41598_2024_66220_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11239818/ea39ec068b85/41598_2024_66220_Fig4_HTML.jpg

相似文献

[1]
Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.

Sci Rep. 2024-7-12

[2]
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI.

Sci Rep. 2023-1-20

[3]
Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.

Front Oncol. 2023-10-24

[4]
A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer.

Eur J Radiol. 2022-4

[5]
A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer.

Radiol Imaging Cancer. 2023-7

[6]
Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.

Breast Cancer Res Treat. 2018-10-16

[7]
Quantitative Apparent Diffusion Coefficients From Peritumoral Regions as Early Predictors of Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer.

J Magn Reson Imaging. 2022-12

[8]
Predicting pathological complete response to neoadjuvant systemic therapy for triple-negative breast cancers using deep learning on multiparametric MRIs.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[9]
Tumor necrosis by pretreatment breast MRI: association with neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC).

Breast Cancer Res Treat. 2021-1

[10]
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.

Breast Cancer Res. 2017-5-18

引用本文的文献

[1]
Application of Machine Learning to Breast MR Imaging.

Magn Reson Med Sci. 2025-7-1

[2]
Deep Learning Models Based on Pretreatment MRI and Clinicopathological Data to Predict Responses to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer.

Cancers (Basel). 2025-3-13

本文引用的文献

[1]
Diffusion Tensor Imaging for Characterizing Changes in Triple-Negative Breast Cancer During Neoadjuvant Systemic Therapy.

J Magn Reson Imaging. 2024-10

[2]
A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer.

Radiol Imaging Cancer. 2023-7

[3]
A phase II study of neoadjuvant atezolizumab and nab-paclitaxel in patients with anthracycline-resistant early-stage triple-negative breast cancer.

Breast Cancer Res Treat. 2023-6

[4]
Targeting chemotherapy resistance in mesenchymal triple-negative breast cancer: a phase II trial of neoadjuvant angiogenic and mTOR inhibition with chemotherapy.

Invest New Drugs. 2023-6

[5]
Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI.

Cancers (Basel). 2023-2-6

[6]
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI.

Sci Rep. 2023-1-20

[7]
Quantitative Apparent Diffusion Coefficients From Peritumoral Regions as Early Predictors of Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer.

J Magn Reson Imaging. 2022-12

[8]
High-background parenchymal enhancement in the contralateral breast is an imaging biomarker for favorable prognosis in patients with triple-negative breast cancer treated with chemotherapy.

Am J Transl Res. 2021-5-15

[9]
Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer.

Br J Radiol. 2020-9-2

[10]
Pembrolizumab for Early Triple-Negative Breast Cancer.

N Engl J Med. 2020-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索