Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Unit 1472, Houston, TX, 77030, USA.
Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Sci Rep. 2023 Jan 20;13(1):1171. doi: 10.1038/s41598-023-27518-2.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.
三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌亚型。新辅助全身治疗(NAST)后再手术是目前 TNBC 的标准治疗方法,约 50-60%的患者可达到病理完全缓解(pCR)。我们研究了深度学习(DL)在 NAST 早期获取的动态对比增强(DCE)MRI 和弥散加权成像上的应用,以预测 TNBC 患者的乳房 pCR 状态。在使用 130 名 TNBC 患者图像的开发阶段,该 DL 模型在训练和验证组中的受试者工作特征曲线下面积(AUCs)分别为 0.97±0.04 和 0.82±0.10。该模型在 32 名独立测试患者组中的评估中获得了 0.86±0.03 的 AUC。在另外 48 名前瞻性盲法测试患者组中,该模型获得了 0.83±0.02 的 AUC。这些结果表明,基于多参数 MRI 的 DL 有可能在 NAST 早期区分乳房中 pCR 或非 pCR 的 TNBC 患者。