文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络-门控循环单元(CNN-GRU)模型的发动机少样本剩余使用寿命(RUL)预测

Few-shot RUL prediction for engines based on CNN-GRU model.

作者信息

Sun Shuhan, Wang Jiongqi, Xiao Yaqi, Peng Jian, Zhou Xuanying

机构信息

School of Science, National University of Defense Technology, Changsha, 410073, China.

School of Design, Hunan University, Changsha, 410073, China.

出版信息

Sci Rep. 2024 Jul 11;14(1):16041. doi: 10.1038/s41598-024-66377-3.


DOI:10.1038/s41598-024-66377-3
PMID:38992098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11239844/
Abstract

In the realm of prognosticating the remaining useful life (RUL) of pivotal components, such as aircraft engines, a prevalent challenge persists where the available historical life data often proves insufficient. This insufficiency engenders obstacles such as impediments in performance degradation feature extraction, inadequacies in capturing temporal relationships comprehensively, and diminished predictive accuracy. To address this issue, a 1D CNN-GRU prediction model for few-shot conditions is proposed in this paper. In pursuit of more comprehensive data feature extraction and enhanced RUL prognostication precision, the Convolutional Neural Network (CNN) is selected for its capacity to discern high-dimensional features amid the intricate dynamics of the data. Concurrently, the Gated Recurrent Unit (GRU) network is leveraged for its robust capability in extracting temporal features inherent within the data. We combine the two to construct a CNN-GRU hybrid network. Moreover, the integration of data distribution alongside correlation and monotonicity indices is employed to winnow the input of multi-sensor monitoring parameters into the CNN-GRU network. Finally, the engine RULs are predicted by the trained model. In this paper, experiments are conducted on a sub-dataset of the National Aeronautics and Space Administration (NASA) C-MAPSS multi-constraint dataset to validate the effectiveness of the method. Experimental results have demonstrated that this method has high accuracy in RUL prediction tasks, which can powerfully demonstrate its effectiveness.

摘要

在预测诸如飞机发动机等关键部件的剩余使用寿命(RUL)领域,一个普遍存在的挑战是,可用的历史寿命数据往往不足。这种不足带来了诸如性能退化特征提取受阻、无法全面捕捉时间关系以及预测准确性降低等障碍。为了解决这个问题,本文提出了一种用于少样本条件的一维卷积神经网络-门控循环单元(1D CNN-GRU)预测模型。为了实现更全面的数据特征提取并提高RUL预测精度,选择卷积神经网络(CNN)是因为它能够在复杂的数据动态中识别高维特征。同时,利用门控循环单元(GRU)网络强大的能力来提取数据中固有的时间特征。我们将两者结合构建了一个CNN-GRU混合网络。此外,结合数据分布以及相关性和单调性指标,对多传感器监测参数的输入进行筛选,使其进入CNN-GRU网络。最后,通过训练好的模型预测发动机的RUL。本文在美国国家航空航天局(NASA)C-MAPSS多约束数据集的一个子数据集上进行了实验,以验证该方法的有效性。实验结果表明,该方法在RUL预测任务中具有较高的准确性,有力地证明了其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/dfb795af48b8/41598_2024_66377_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ec426b0882f8/41598_2024_66377_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/b8be51de105e/41598_2024_66377_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/6e02f1cd162c/41598_2024_66377_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ee859834420b/41598_2024_66377_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/e70ab5341ba6/41598_2024_66377_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/5b830e17d36d/41598_2024_66377_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/bda63dfb9a69/41598_2024_66377_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ee3836a81650/41598_2024_66377_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ed926e1383c1/41598_2024_66377_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/0ddb009cf636/41598_2024_66377_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/16163d71e205/41598_2024_66377_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/4ad5aa02bb64/41598_2024_66377_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/dee1b6744adf/41598_2024_66377_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/f87ad7fe7313/41598_2024_66377_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/dfb795af48b8/41598_2024_66377_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ec426b0882f8/41598_2024_66377_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/b8be51de105e/41598_2024_66377_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/6e02f1cd162c/41598_2024_66377_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ee859834420b/41598_2024_66377_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/e70ab5341ba6/41598_2024_66377_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/5b830e17d36d/41598_2024_66377_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/bda63dfb9a69/41598_2024_66377_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ee3836a81650/41598_2024_66377_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/ed926e1383c1/41598_2024_66377_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/0ddb009cf636/41598_2024_66377_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/16163d71e205/41598_2024_66377_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/4ad5aa02bb64/41598_2024_66377_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/dee1b6744adf/41598_2024_66377_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/f87ad7fe7313/41598_2024_66377_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8400/11239844/dfb795af48b8/41598_2024_66377_Fig15_HTML.jpg

相似文献

[1]
Few-shot RUL prediction for engines based on CNN-GRU model.

Sci Rep. 2024-7-11

[2]
A Novel Method for Remaining Useful Life Prediction of RF Circuits Based on the Gated Recurrent Unit-Convolutional Neural Network Model.

Sensors (Basel). 2024-4-29

[3]
Adaptively Lightweight Spatiotemporal Information-Extraction-Operator-Based DL Method for Aero-Engine RUL Prediction.

Sensors (Basel). 2023-7-5

[4]
A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.

Sci Rep. 2024-5-2

[5]
A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.

Sensors (Basel). 2020-12-11

[6]
An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.

PeerJ Comput Sci. 2022-8-30

[7]
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.

Sensors (Basel). 2021-1-8

[8]
A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit.

Sensors (Basel). 2020-4-26

[9]
Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.

IEEE Trans Autom Sci Eng. 2024-4

[10]
Application of Dual-Channel Convolutional Neural Network Algorithm in Semantic Feature Analysis of English Text Big Data.

Comput Intell Neurosci. 2021

引用本文的文献

[1]
A Lightweight Transformer Edge Intelligence Model for RUL Prediction Classification.

Sensors (Basel). 2025-7-6

[2]
A multi-scale cross-dimension interaction approach with adaptive dilated TCN for RUL prediction.

Sci Rep. 2025-6-2

[3]
Intelligent fault diagnosis and operation condition monitoring of transformer based on multi-source data fusion and mining.

Sci Rep. 2025-3-4

本文引用的文献

[1]
Advancing aircraft engine RUL predictions: an interpretable integrated approach of feature engineering and aggregated feature importance.

Sci Rep. 2023-8-18

[2]
Long short-term memory.

Neural Comput. 1997-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索