Sun Shuhan, Wang Jiongqi, Xiao Yaqi, Peng Jian, Zhou Xuanying
School of Science, National University of Defense Technology, Changsha, 410073, China.
School of Design, Hunan University, Changsha, 410073, China.
Sci Rep. 2024 Jul 11;14(1):16041. doi: 10.1038/s41598-024-66377-3.
In the realm of prognosticating the remaining useful life (RUL) of pivotal components, such as aircraft engines, a prevalent challenge persists where the available historical life data often proves insufficient. This insufficiency engenders obstacles such as impediments in performance degradation feature extraction, inadequacies in capturing temporal relationships comprehensively, and diminished predictive accuracy. To address this issue, a 1D CNN-GRU prediction model for few-shot conditions is proposed in this paper. In pursuit of more comprehensive data feature extraction and enhanced RUL prognostication precision, the Convolutional Neural Network (CNN) is selected for its capacity to discern high-dimensional features amid the intricate dynamics of the data. Concurrently, the Gated Recurrent Unit (GRU) network is leveraged for its robust capability in extracting temporal features inherent within the data. We combine the two to construct a CNN-GRU hybrid network. Moreover, the integration of data distribution alongside correlation and monotonicity indices is employed to winnow the input of multi-sensor monitoring parameters into the CNN-GRU network. Finally, the engine RULs are predicted by the trained model. In this paper, experiments are conducted on a sub-dataset of the National Aeronautics and Space Administration (NASA) C-MAPSS multi-constraint dataset to validate the effectiveness of the method. Experimental results have demonstrated that this method has high accuracy in RUL prediction tasks, which can powerfully demonstrate its effectiveness.
在预测诸如飞机发动机等关键部件的剩余使用寿命(RUL)领域,一个普遍存在的挑战是,可用的历史寿命数据往往不足。这种不足带来了诸如性能退化特征提取受阻、无法全面捕捉时间关系以及预测准确性降低等障碍。为了解决这个问题,本文提出了一种用于少样本条件的一维卷积神经网络-门控循环单元(1D CNN-GRU)预测模型。为了实现更全面的数据特征提取并提高RUL预测精度,选择卷积神经网络(CNN)是因为它能够在复杂的数据动态中识别高维特征。同时,利用门控循环单元(GRU)网络强大的能力来提取数据中固有的时间特征。我们将两者结合构建了一个CNN-GRU混合网络。此外,结合数据分布以及相关性和单调性指标,对多传感器监测参数的输入进行筛选,使其进入CNN-GRU网络。最后,通过训练好的模型预测发动机的RUL。本文在美国国家航空航天局(NASA)C-MAPSS多约束数据集的一个子数据集上进行了实验,以验证该方法的有效性。实验结果表明,该方法在RUL预测任务中具有较高的准确性,有力地证明了其有效性。
Sci Rep. 2024-7-11
Sensors (Basel). 2020-12-11
PeerJ Comput Sci. 2022-8-30
Sensors (Basel). 2021-1-8
IEEE Trans Autom Sci Eng. 2024-4
Sensors (Basel). 2025-7-6
Neural Comput. 1997-11-15