Suppr超能文献

一种基于新型变压器的深度学习模型,通过位置敏感注意力和门控分层长短期记忆网络增强,用于航空发动机剩余使用寿命预测。

A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.

作者信息

Chen Xinping

机构信息

College of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing, 401331, China.

出版信息

Sci Rep. 2024 May 2;14(1):10061. doi: 10.1038/s41598-024-59095-3.

Abstract

Accurate prediction of remaining useful life (RUL) for aircraft engines is essential for proactive maintenance and safety assurance. However, existing methods such as physics-based models, classical recurrent neural networks, and convolutional neural networks face limitations in capturing long-term dependencies and modeling complex degradation patterns. In this study, we propose a novel deep-learning model based on the Transformer architecture to address these limitations. Specifically, to address the issue of insensitivity to local context in the attention mechanism employed by the Transformer encoder, we introduce a position-sensitive self-attention (PSA) unit to enhance the model's ability to incorporate local context by attending to the positional relationships of the input data at each time step. Additionally, a gated hierarchical long short-term memory network (GHLSTM) is designed to perform regression prediction at different time scales on the latent features, thereby improving the accuracy of RUL estimation for mechanical equipment. Experiments on the C-MAPSS dataset demonstrate that the proposed model outperforms existing methods in RUL prediction, showcasing its effectiveness in modeling complex degradation patterns and long-term dependencies.

摘要

准确预测飞机发动机的剩余使用寿命(RUL)对于主动维护和安全保障至关重要。然而,现有的方法,如基于物理的模型、经典循环神经网络和卷积神经网络,在捕捉长期依赖关系和对复杂退化模式进行建模方面存在局限性。在本研究中,我们提出了一种基于Transformer架构的新型深度学习模型来解决这些局限性。具体而言,为了解决Transformer编码器所采用的注意力机制对局部上下文不敏感的问题,我们引入了位置敏感自注意力(PSA)单元,通过关注每个时间步输入数据的位置关系来增强模型纳入局部上下文的能力。此外,设计了一个门控分层长短期记忆网络(GHLSTM),以在不同时间尺度上对潜在特征进行回归预测,从而提高机械设备RUL估计的准确性。在C-MAPSS数据集上的实验表明所提出的模型在RUL预测方面优于现有方法,展示了其在对复杂退化模式和长期依赖关系进行建模方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e40/11526133/82b2d795fc3e/41598_2024_59095_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验