Abdelhameed Ahmed, Bhangu Harpreet, Feng Jingna, Li Fang, Hu Xinyue, Patel Parag, Yang Liu, Tao Cui
McWilliams School of Biomedical Informatics (A.A., J.F., F.L., X.H., C.T.), University of Texas Health Science Center at Houston, TX; and Department of Artificial Intelligence and Informatics (A.A., J.F., F.L., X.H., C.T.) and Department of Transplantation (H.B., P.P., L.Y.), Mayo Clinic, Jacksonville, FL.
Mayo Clin Proc Digit Health. 2024 Jun;2(2):221-230. doi: 10.1016/j.mcpdig.2024.03.005. Epub 2024 Apr 15.
To validate deep learning models' ability to predict post-transplantation major adverse cardiovascular events (MACE) in patients undergoing liver transplantation (LT).
We used data from Optum's de-identified Clinformatics Data Mart Database to identify liver transplant recipients between January 2007 and March 2020. To predict post-transplantation MACE risk, we considered patients' demographics characteristics, diagnoses, medications, and procedural data recorded back to 3 years before the LT procedure date (index date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to develop and test the deep learning model's performance against other baseline machine learning models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model performance was evaluated on the remaining 20% using the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).
Using different prediction intervals after the index date, the top-performing model was the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822-0.862) and AUC-PR of 0.578 (95% CI, 0.537-0.621) for a 30-day prediction interval after LT.
Using longitudinal claims data, deep learning models can efficiently predict MACE after LT, assisting clinicians in identifying high-risk candidates for further risk stratification or other management strategies to improve transplant outcomes based on important features identified by the model.
验证深度学习模型预测肝移植(LT)患者移植后主要不良心血管事件(MACE)的能力。
我们使用了Optum公司去识别化的临床信息数据集市数据库中的数据,以确定2007年1月至2020年3月期间的肝移植受者。为了预测移植后MACE风险,我们考虑了患者的人口统计学特征、诊断、用药情况以及记录至LT手术日期(索引日期)前3年的手术数据。使用双向门控循环单元(BiGRU)深度学习模型在索引日期后长达5年的不同预测间隔长度下预测MACE。总共18304名肝移植受者(平均年龄57.4岁[标准差12.76];7158名[39.1%]为女性)被用于开发和测试深度学习模型相对于其他基线机器学习模型的性能。模型在队列的80%上使用5折交叉验证进行优化,并使用受试者操作特征曲线下面积(AUC-ROC)和精确召回率曲线下面积(AUC-PR)在其余20%上评估模型性能。
在索引日期后的不同预测间隔下,表现最佳的模型是深度学习模型BiGRU,对于LT后30天的预测间隔,其AUC-ROC为0.841(95%CI,0.822-0.862),AUC-PR为0.578(95%CI,0.537-0.621)。
利用纵向索赔数据,深度学习模型可以有效预测LT后的MACE,帮助临床医生识别高风险候选者,以便基于模型识别的重要特征进行进一步的风险分层或其他管理策略,从而改善移植结局。