Suppr超能文献

来自[具体来源未提及]的SenB和SenA酶的结构为硒代半胱氨酸生物合成中碳-硒键的形成提供了见解。

Structures of SenB and SenA enzymes from provide insights into carbon-selenium bond formation in selenoneine biosynthesis.

作者信息

Xu Sihan, Zhao Jinyi, Liu Xiang, Yang Xiuna, Xu Zili, Gao Yan, Ma Yuanyuan, Yang Haitao

机构信息

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.

出版信息

Heliyon. 2024 Jun 14;10(12):e32888. doi: 10.1016/j.heliyon.2024.e32888. eCollection 2024 Jun 30.

Abstract

Selenoneine, an ergothioneine analog, is important for antioxidation and detoxification. SenB and SenA are two crucial enzymes that form carbon-selenium bonds in the selenoneine biosynthetic pathway. To investigate their underlying catalytic mechanisms, we obtained complex structures of SenB with its substrate UDP-N-acetylglucosamine (UDP-GlcNAc) and SenA with N-α-trimethyl histidine (TMH). SenB adopts a type-B glycosyltransferase fold. Structural and functional analysis of the interaction network at the active center provide key information on substrate recognition and suggest a metal-ion-independent, inverting mechanism is utilized for SenB-mediated selenoglycoside formation. Moreover, the complex structure of SenA with TMH and enzymatic activity assays highlight vital residues that control substrate binding and specificity. Based on the conserved structure and substrate-binding pocket of the type I sulfoxide synthase EgtB in the ergothioneine biosynthetic pathway, a similar reaction mechanism was proposed for the formation of C-Se bonds by SenA. The structures provide knowledge on selenoneine synthesis and lay groundwork for further applications of this pathway.

摘要

硒代甲基半胱氨酸是麦角硫因的类似物,对抗氧化和解毒很重要。SenB和SenA是在硒代甲基半胱氨酸生物合成途径中形成碳-硒键的两种关键酶。为了研究它们潜在的催化机制,我们获得了SenB与其底物UDP-N-乙酰葡糖胺(UDP-GlcNAc)的复合物结构以及SenA与N-α-三甲基组氨酸(TMH)的复合物结构。SenB采用B型糖基转移酶折叠结构。对活性中心相互作用网络的结构和功能分析提供了关于底物识别的关键信息,并表明SenB介导的硒糖苷形成利用了一种不依赖金属离子的翻转机制。此外,SenA与TMH的复合物结构和酶活性测定突出了控制底物结合和特异性的重要残基。基于麦角硫因生物合成途径中I型亚砜合酶EgtB的保守结构和底物结合口袋,提出了SenA形成C-Se键的类似反应机制。这些结构为硒代甲基半胱氨酸的合成提供了知识,并为该途径的进一步应用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8d/11237966/e5bb01399e29/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验