Ethier Jeffrey, Antoniuk Evan R, Brettmann Blair
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA.
Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Soft Matter. 2024 Jul 24;20(29):5652-5669. doi: 10.1039/d4sm00590b.
Polymer processing, purification, and self-assembly have significant roles in the design of polymeric materials. Understanding how polymers behave in solution (, their solubility, chemical properties, ) can improve our control over material properties their processing-structure-property relationships. For many decades the polymer science community has relied on thermodynamic and physics-based models to aid in this endeavor, but all rely on disparate data sets and use-case scenarios. Hence, there are still significant challenges to predict the solubility of a polymer, whether it is for selecting sustainable solvents, obtaining thermodynamic parameters for phase separation, or navigating the coexistence curve. This perspective aims to discuss the different approaches of applying computational tools to predict polymer solubility, with a significant focus on machine learning techniques to capture the rapid progress in that space. We examine challenges and opportunities that remain for creating a comprehensive solubility toolset that can accelerate the design of a broad range of applications including films, membranes, and pharmaceuticals.
聚合物加工、纯化和自组装在聚合物材料设计中起着重要作用。了解聚合物在溶液中的行为(包括它们的溶解性、化学性质)可以改善我们对材料性能及其加工-结构-性能关系的控制。几十年来,聚合物科学界一直依赖基于热力学和物理的模型来助力这一工作,但所有这些模型都依赖于不同的数据集和用例场景。因此,预测聚合物的溶解度仍然面临重大挑战,无论是用于选择可持续溶剂、获取相分离的热力学参数,还是绘制共存曲线。本文旨在讨论应用计算工具预测聚合物溶解度的不同方法,重点关注机器学习技术,以跟上该领域的快速发展。我们研究了创建一个全面的溶解度工具集所面临的挑战和机遇,该工具集可以加速包括薄膜、膜和药物在内的广泛应用的设计。