Liew Zheng Jie, Elkhaiary Ziad, Lapkin Alexei A
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK.
Yusuf Hamied Department of Chemistry, Innovation Centre in Digital Molecular Technologies, University of Cambridge, Cambridge, CB2 1EW UK.
NPJ Comput Mater. 2025;11(1):161. doi: 10.1038/s41524-025-01658-7. Epub 2025 May 31.
Polymer-solvent systems exhibit complex solvation behaviours encompassing a diverse range of phenomena, including swelling, gelation, and dispersion. Accurate interpretation is often hindered by subjectivity, particularly in manual rapid screening assessments. While computer vision models hold significant promise to replace the reliance on human evaluation for inference, their adoption is limited by the lack of domain-specific datasets tailored, in our case, to polymer-solvent systems. To bridge this gap, we conducted extensive screenings of polymers with diverse physical and chemical properties across various solvents, capturing solvation characteristics through images, videos, and image-text captions. This dataset informed the development of a multi-model vision assistant, integrating computer vision and vision-language approaches to autonomously detect, infer, and contextualise polymer-solvent interactions. The system combines a 2D-CNN module for static solvation state classification, a hybrid 2D/3D-CNN module to capture temporal dynamics, and a BLIP-2-based contextualisation module to generate descriptive captions for solvation behaviours, including vial orientation, solvent discolouration, and polymer interaction states. Computationally efficient, this vision assistant provides an accurate, objective, and scalable solution in interpreting solvation behaviours, fit for autonomous platforms and high-throughput workflows in material discovery and analysis.
聚合物 - 溶剂体系表现出复杂的溶剂化行为,涵盖多种现象,包括溶胀、凝胶化和分散。准确的解释常常受到主观性的阻碍,尤其是在手动快速筛选评估中。虽然计算机视觉模型有望取代对人工评估的依赖进行推断,但其应用受到缺乏特定领域数据集的限制,就我们的情况而言,即缺乏针对聚合物 - 溶剂体系量身定制的数据集。为了弥补这一差距,我们对具有不同物理和化学性质的聚合物在各种溶剂中进行了广泛筛选,通过图像、视频和图像 - 文本字幕捕捉溶剂化特征。该数据集为多模型视觉助手的开发提供了依据,该助手整合了计算机视觉和视觉语言方法,以自动检测、推断和情境化聚合物 - 溶剂相互作用。该系统结合了用于静态溶剂化状态分类的二维卷积神经网络(2D - CNN)模块、用于捕捉时间动态的混合二维/三维卷积神经网络(2D/3D - CNN)模块以及基于BLIP - 2的情境化模块,以生成关于溶剂化行为的描述性字幕,包括小瓶方向、溶剂变色和聚合物相互作用状态。这种视觉助手计算效率高,在解释溶剂化行为方面提供了一种准确、客观且可扩展的解决方案,适用于材料发现和分析中的自主平台和高通量工作流程。