National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
Sichuan Institute for Drug Control, Chengdu 610097, China.
J Mater Chem B. 2024 Aug 7;12(31):7532-7542. doi: 10.1039/d4tb00700j.
Hydrophilic peptides (HPs) play a critical role in the pathogenesis of hepatocellular carcinoma (HCC). However, the comprehensive and in-depth high-throughput analysis of specific changes in HPs associated with HCC remains unrealized, due to the complex nature of biological fluids and the challenges of mining complex patterns in large data sets. The clinical diagnosis of HCC still lacks a non-destructive and accurate classification method, given the limited specificity of widely used biomarkers. To address these challenges, we have established a multifunctional platform that integrates artificial intelligence computation, hydrophilic interaction extraction of HPs, and MALDI-MS testing. This platform aims to achieve highly sensitive HP fingerprinting for accurate diagnosis of HCC. The method not only facilitates efficient detection of HPs, but also achieves a remarkable 100.00% diagnostic accuracy for HCC in a test cohort, supported by machine learning algorithms. By constructing a panel of HPs with 10 characteristic features, we achieved 98% accuracy in the test cohort for rapid diagnosis and identified 62 HPs deeply involved in pathways related to liver diseases. This integrated strategy provides new research directions for future biomarker studies as well as early diagnosis and individualized treatment of HCC.
亲水肽 (HPs) 在肝细胞癌 (HCC) 的发病机制中起着关键作用。然而,由于生物流体的复杂性和挖掘大数据集中复杂模式的挑战,与 HCC 相关的 HPs 的特定变化的综合和深入的高通量分析仍未实现。鉴于广泛使用的生物标志物的特异性有限,HCC 的临床诊断仍然缺乏一种非破坏性和准确的分类方法。为了解决这些挑战,我们建立了一个多功能平台,该平台集成了人工智能计算、亲水相互作用提取和 MALDI-MS 测试。该平台旨在实现高度敏感的 HP 指纹分析,以准确诊断 HCC。该方法不仅便于高效检测 HPs,而且在机器学习算法的支持下,在测试队列中实现了 HCC 的 100.00%诊断准确率。通过构建具有 10 个特征的 HP 面板,我们在测试队列中实现了 98%的准确率,可用于快速诊断,并确定了 62 种与肝病相关途径深度相关的 HPs。这种综合策略为未来的生物标志物研究以及 HCC 的早期诊断和个体化治疗提供了新的研究方向。