Suppr超能文献

拉曼光谱和代谢组学追踪结直肠癌中小分子治疗的代谢反应。

Metabolic Response to Small Molecule Therapy in Colorectal Cancer Tracked with Raman Spectroscopy and Metabolomics.

机构信息

Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.

Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 21;63(43):e202410919. doi: 10.1002/anie.202410919. Epub 2024 Sep 5.

Abstract

Despite numerous screening tools for colorectal cancer (CRC), 25 % of patients are diagnosed with advanced disease. Novel diagnostic technologies that are early, accurate, and rapid are imperative to assess the therapeutic efficacy of clinical drugs and identify new biomarkers of treatment response. Here Raman spectroscopy (RS) was used to track metabolic reprogramming in KRAS-mutant HCT116 and SW837 cells, and KRAS wild-type CC cells. RS combined with multivariate analysis methods distinguished nonresponsive, partially responsive, and responsive cells treated with cetuximab, a monoclonal antibody for EGFR inhibition, sotorasib, a clinically approved KRAS inhibitor, and various doses of trametinib, an inhibitor of the MAPK pathway. Cells treated with a combination of subtoxic doses of trametinib and BKM120, an inhibitor of the PI3K pathway, showed a synergistic response between the two pathways. Using a supervised machine learning regression model, we established a scoring methodology trained to a priori predict therapeutic response to new treatment combinations. RS metabolites were verified with mass spectrometry, and enrichment pathways were identified, including amino acid, purine, and nicotinate and nicotinamide metabolism that differentiated monotherapy from combination therapy. Our approach may ultimately be applicable to patient-derived primary cells and cultures of patient tumors to predict effective drugs for individualized care.

摘要

尽管有许多用于结直肠癌 (CRC) 的筛查工具,但仍有 25%的患者被诊断为晚期疾病。新型的诊断技术需要具有早期、准确和快速的特点,这对于评估临床药物的治疗效果和识别新的治疗反应生物标志物至关重要。在这里,拉曼光谱 (RS) 被用于追踪 KRAS 突变的 HCT116 和 SW837 细胞以及 KRAS 野生型 CC 细胞中的代谢重编程。RS 结合多元分析方法,区分了经西妥昔单抗(一种用于 EGFR 抑制的单克隆抗体)、索托拉西布(一种临床批准的 KRAS 抑制剂)和各种剂量的曲美替尼(一种 MAPK 通路抑制剂)治疗的无反应、部分反应和有反应的细胞。用亚毒性剂量的曲美替尼和 BKM120(一种 PI3K 通路抑制剂)联合治疗的细胞显示出两条通路之间的协同反应。使用有监督的机器学习回归模型,我们建立了一种评分方法学,该方法学经过预先训练,可以预测新的治疗组合的治疗反应。用质谱法验证了 RS 代谢物,并确定了富集途径,包括区分单药治疗与联合治疗的氨基酸、嘌呤和烟酸盐和烟酰胺代谢。我们的方法最终可能适用于患者来源的原代细胞和患者肿瘤的培养物,以预测用于个体化治疗的有效药物。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验