Yang Ruikai, He Fan, He Mingzhen, Yang Jie, Huang Xiaolin
IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):7945-7954. doi: 10.1109/TNNLS.2024.3414325. Epub 2025 May 2.
Random feature (RF) has been widely used for node consistency in decentralized kernel ridge regression (KRR). Currently, the consistency is guaranteed by imposing constraints on coefficients of features, necessitating that the RFs on different nodes are identical. However, in many applications, data on different nodes vary significantly on the number or distribution, which calls for adaptive and data-dependent methods that generate different RFs. To tackle the essential difficulty, we propose a new decentralized KRR algorithm that pursues consensus on decision functions, which allows great flexibility and well adapts data on nodes. The convergence is rigorously given, and the effectiveness is numerically verified: by capturing the characteristics of the data on each node, while maintaining the same communication costs as other methods, we achieved an average regression accuracy improvement of 25.5% across six real-world datasets.
随机特征(RF)已广泛应用于去中心化核岭回归(KRR)中的节点一致性。目前,通过对特征系数施加约束来保证一致性,这就要求不同节点上的随机特征是相同的。然而,在许多应用中,不同节点上的数据在数量或分布上差异很大,这就需要采用自适应和依赖数据的方法来生成不同的随机特征。为了解决这一关键难题,我们提出了一种新的去中心化KRR算法,该算法在决策函数上寻求一致性,具有很大的灵活性且能很好地适应节点上的数据。我们严格给出了收敛性,并通过数值验证了有效性:通过捕捉每个节点上数据的特征,在保持与其他方法相同通信成本的同时,我们在六个真实世界数据集上实现了平均回归准确率提高25.5%。