Suppr超能文献

基于深度学习模型和分子对接的阿尔茨海默病筛选靶点和治疗药物。

Screening Targets and Therapeutic Drugs for Alzheimer's Disease Based on Deep Learning Model and Molecular Docking.

机构信息

College of Life and Health Sciences, Northeastern University, Shenyang, China.

Health Sciences Institute, China Medical University, Shenyang, China.

出版信息

J Alzheimers Dis. 2024;100(3):863-878. doi: 10.3233/JAD-231389.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a neurodegenerative disorder caused by a complex interplay of various factors. However, a satisfactory cure for AD remains elusive. Pharmacological interventions based on drug targets are considered the most cost-effective therapeutic strategy. Therefore, it is paramount to search potential drug targets and drugs for AD.

OBJECTIVE

We aimed to provide novel targets and drugs for the treatment of AD employing transcriptomic data of AD and normal control brain tissues from a new perspective.

METHODS

Our study combined the use of a multi-layer perceptron (MLP) with differential expression analysis, variance assessment and molecular docking to screen targets and drugs for AD.

RESULTS

We identified the seven differentially expressed genes (DEGs) with the most significant variation (ANKRD39, CPLX1, FABP3, GABBR2, GNG3, PPM1E, and WDR49) in transcriptomic data from AD brain. A newly built MLP was used to confirm the association between the seven DEGs and AD, establishing these DEGs as potential drug targets. Drug databases and molecular docking results indicated that arbaclofen, baclofen, clozapine, arbaclofen placarbil, BML-259, BRD-K72883421, and YC-1 had high affinity for GABBR2, and FABP3 bound with oleic, palmitic, and stearic acids. Arbaclofen and YC-1 activated GABAB receptor through PI3K/AKT and PKA/CREB pathways, respectively, thereby promoting neuronal anti-apoptotic effect and inhibiting p-tau and Aβ formation.

CONCLUSIONS

This study provided a new strategy for the identification of targets and drugs for the treatment of AD using deep learning. Seven therapeutic targets and ten drugs were selected by using this method, providing new insight for AD treatment.

摘要

背景

阿尔茨海默病(AD)是一种由多种因素复杂相互作用引起的神经退行性疾病。然而,目前仍缺乏令人满意的 AD 治疗方法。基于药物靶点的药物干预被认为是最具成本效益的治疗策略。因此,寻找 AD 的潜在药物靶点和药物至关重要。

目的

我们旨在从新的视角,利用 AD 患者和正常对照脑组织的转录组数据,为 AD 的治疗提供新的靶点和药物。

方法

本研究结合使用多层感知器(MLP)与差异表达分析、方差评估和分子对接,筛选 AD 的靶点和药物。

结果

我们在 AD 脑转录组数据中确定了 7 个差异表达最显著的基因(ANKRD39、CPLX1、FABP3、GABBR2、GNG3、PPM1E 和 WDR49)。一个新建立的 MLP 被用来验证这 7 个 DEGs 与 AD 之间的关联,确定这些 DEGs 为潜在的药物靶点。药物数据库和分子对接结果表明,arbaclofen、baclofen、clozapine、arbaclofen placarbil、BML-259、BRD-K72883421 和 YC-1 与 GABBR2 具有高亲和力,而 FABP3 与油酸、棕榈酸和硬脂酸结合。Arbaclofen 和 YC-1 通过 PI3K/AKT 和 PKA/CREB 通路分别激活 GABAB 受体,从而促进神经元抗凋亡作用,抑制 p-tau 和 Aβ形成。

结论

本研究利用深度学习为 AD 治疗靶点和药物的鉴定提供了一种新策略。通过该方法选择了 7 个治疗靶点和 10 种药物,为 AD 治疗提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验