Suppr超能文献

ONE-SAMP 3.0:基于单核苷酸多态性数据从一个群体估计有效种群大小。

ONeSAMP 3.0: estimation of effective population size via single nucleotide polymorphism data from one population.

机构信息

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA.

Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

G3 (Bethesda). 2024 Oct 7;14(10). doi: 10.1093/g3journal/jkae153.

Abstract

The genetic effective size (Ne) is arguably one of the most important characteristics of a population as it impacts the rate of loss of genetic diversity. Methods that estimate Ne are important in population and conservation genetic studies as they quantify the risk of a population being inbred or lacking genetic diversity. Yet there are very few methods that can estimate the Ne from data from a single population and without extensive information about the genetics of the population, such as a linkage map, or a reference genome of the species of interest. We present ONeSAMP 3.0, an algorithm for estimating Ne from single nucleotide polymorphism data collected from a single population sample using approximate Bayesian computation and local linear regression. We demonstrate the utility of this approach using simulated Wright-Fisher populations, and empirical data from five endangered Channel Island fox (Urocyon littoralis) populations to evaluate the performance of ONeSAMP 3.0 compared to a commonly used Ne estimator. Our results show that ONeSAMP 3.0 is broadly applicable to natural populations and is flexible enough that future versions could easily include summary statistics appropriate for a suite of biological and sampling conditions. ONeSAMP 3.0 is publicly available under the GNU General Public License at https://github.com/AaronHong1024/ONeSAMP_3.

摘要

遗传有效大小(Ne)可以说是种群最重要的特征之一,因为它会影响遗传多样性的丧失速度。估计 Ne 的方法在种群和保护遗传学研究中非常重要,因为它们可以量化种群近交或缺乏遗传多样性的风险。然而,几乎没有方法可以从单个种群的数据中估计 Ne,而无需有关种群遗传学的广泛信息,例如连锁图谱或感兴趣物种的参考基因组。我们提出了 ONeSAMP 3.0,这是一种使用近似贝叶斯计算和局部线性回归从单个种群样本中收集的单核苷酸多态性数据估计 Ne 的算法。我们使用模拟的 Wright-Fisher 种群和来自五个濒危海峡岛狐(Urocyon littoralis)种群的经验数据来证明该方法的实用性,以评估 ONeSAMP 3.0 与常用的 Ne 估计器相比的性能。我们的结果表明,ONeSAMP 3.0 广泛适用于自然种群,并且足够灵活,将来的版本可以轻松地包括适用于一系列生物和采样条件的汇总统计信息。ONeSAMP 3.0 可在 https://github.com/AaronHong1024/ONeSAMP_3. 下根据 GNU 通用公共许可证获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75cc/11457061/61eadcf1901a/jkae153f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验