Suppr超能文献

整合肺癌临床数据与医学影像:使用观察性医疗结局合作组织通用数据模型扩展的可行性研究

Integrating Clinical Data and Medical Imaging in Lung Cancer: Feasibility Study Using the Observational Medical Outcomes Partnership Common Data Model Extension.

作者信息

Ji Hyerim, Kim Seok, Sunwoo Leonard, Jang Sowon, Lee Ho-Young, Yoo Sooyoung

机构信息

Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.

Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.

出版信息

JMIR Med Inform. 2024 Jul 12;12:e59187. doi: 10.2196/59187.

Abstract

BACKGROUND

Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data. However, integrating medical imaging remains a challenge.

OBJECTIVE

This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal research.

METHODS

Our approach included the analysis and selection of digital imaging and communications in medicine header tags, validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM), constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables-IMAGING_STUDY, IMAGING_SERIES, IMAGING_ANNOTATION, and FILEPATH-to standardize various imaging-related data and link to clinical data.

RESULTS

This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records, illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings.

CONCLUSIONS

These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its wide-ranging utility for medical conditions.

摘要

背景

数字转型,尤其是医学影像与临床数据的整合,在个性化医疗中至关重要。观察性医疗结果合作组织(OMOP)通用数据模型(CDM)对健康数据进行了标准化。然而,整合医学影像仍然是一项挑战。

目的

本研究提出一种将医学影像数据与OMOP CDM相结合的方法,以改善多模态研究。

方法

我们的方法包括对医学数字成像和通信(DICOM)头部标签进行分析和选择、验证数据格式,并根据OMOP CDM框架进行对齐。快速医疗保健互操作性资源(FHIR)成像研究简档指导我们在列命名和定义方面保持一致。使用实体-属性-值模型构建的成像通用数据模型(I-CDM)有助于实现可扩展且高效的医学影像数据管理。对于2010年至2017年间诊断为肺癌的患者,我们引入了4个新表——IMAGING_STUDY、IMAGING_SERIES、IMAGING_ANNOTATION和FILEPATH——以标准化各种与影像相关的数据并链接到临床数据。

结果

该框架强调了I-CDM在增强我们对肺癌诊断和治疗策略理解方面的有效性。I-CDM表的实施实现了一个综合数据集的结构化组织,包括282,098条IMAGING_STUDY记录、5,674,425条IMAGING_SERIES记录和48,536条IMAGING_ANNOTATION记录,说明了该方法的广泛范围和深度。使用来自肺癌患者的实际数据进行的基于场景的分析强调了我们方法的可行性。应用44条特定规则进行的数据质量检查证实了所构建数据集的高完整性,所有检查均成功通过,强调了我们研究结果的可靠性。

结论

这些发现表明I-CDM可以改善医学影像和临床数据的整合与分析。通过应对数据标准化和管理方面的挑战,我们的方法有助于增强诊断和治疗策略。未来的研究应将I-CDM的应用扩展到不同疾病人群,并探索其在各种医疗状况中的广泛用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/11282389/4e3e3088f9a0/medinform_v12i1e59187_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验