Suppr超能文献

一种基于三维绵羊面部重建与特征点匹配的绵羊识别方法

A Sheep Identification Method Based on Three-Dimensional Sheep Face Reconstruction and Feature Point Matching.

作者信息

Xue Jing, Hou Zhanfeng, Xuan Chuanzhong, Ma Yanhua, Sun Quan, Zhang Xiwen, Zhong Liang

机构信息

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

Inner Mongolia Engineering Research Center for Intelligent Facilities in Prataculture and Livestock Breeding, Hohhot 010018, China.

出版信息

Animals (Basel). 2024 Jun 29;14(13):1923. doi: 10.3390/ani14131923.

Abstract

As the sheep industry rapidly moves towards modernization, digitization, and intelligence, there is a need to build breeding farms integrated with big data. By collecting individual information on sheep, precision breeding can be conducted to improve breeding efficiency, reduce costs, and promote healthy breeding practices. In this context, the accurate identification of individual sheep is essential for establishing digitized sheep farms and precision animal husbandry. Currently, scholars utilize deep learning technology to construct recognition models, learning the biological features of sheep faces to achieve accurate identification. However, existing research methods are limited to pattern recognition at the image level, leading to a lack of diversity in recognition methods. Therefore, this study focuses on the small-tailed Han sheep and develops a sheep face recognition method based on three-dimensional reconstruction technology and feature point matching, aiming to enrich the theoretical research of sheep face recognition technology. The specific recognition approach is as follows: full-angle sheep face images of experimental sheep are collected, and corresponding three-dimensional sheep face models are generated using three-dimensional reconstruction technology, further obtaining three-dimensional sheep face images from three different perspectives. Additionally, this study developed a sheep face orientation recognition algorithm called the sheep face orientation recognition algorithm (SFORA). The SFORA incorporates the ECA mechanism to further enhance recognition performance. Ultimately, the SFORA has a model size of only 5.3 MB, with accuracy and F1 score reaching 99.6% and 99.5%, respectively. During the recognition task, the SFORA is first used for sheep face orientation recognition, followed by matching the recognition image with the corresponding three-dimensional sheep face image based on the established SuperGlue feature-matching algorithm, ultimately outputting the recognition result. Experimental results indicate that when the confidence threshold is set to 0.4, SuperGlue achieves the best matching performance, with matching accuracies for the front, left, and right faces reaching 96.0%, 94.2%, and 96.3%, respectively. This study enriches the theoretical research on sheep face recognition technology and provides technical support.

摘要

随着养羊业迅速迈向现代化、数字化和智能化,需要建设与大数据相结合的养殖场。通过收集绵羊的个体信息,可以进行精准育种,以提高育种效率、降低成本并促进健康的育种实践。在此背景下,准确识别个体绵羊对于建立数字化养羊场和精准畜牧业至关重要。目前,学者们利用深度学习技术构建识别模型,学习绵羊面部的生物学特征以实现准确识别。然而,现有的研究方法局限于图像层面的模式识别,导致识别方法缺乏多样性。因此,本研究聚焦于小尾寒羊,开发了一种基于三维重建技术和特征点匹配的绵羊面部识别方法,旨在丰富绵羊面部识别技术的理论研究。具体识别方法如下:采集实验绵羊的全角度绵羊面部图像,利用三维重建技术生成相应的三维绵羊面部模型,进一步从三个不同视角获取三维绵羊面部图像。此外,本研究开发了一种名为绵羊面部方向识别算法(SFORA)的绵羊面部方向识别算法。SFORA纳入了ECA机制以进一步提高识别性能。最终,SFORA的模型大小仅为5.3MB,准确率和F1分数分别达到99.6%和99.5%。在识别任务中,首先使用SFORA进行绵羊面部方向识别,然后基于已建立的SuperGlue特征匹配算法将识别图像与相应的三维绵羊面部图像进行匹配,最终输出识别结果。实验结果表明,当置信阈值设置为0.4时,SuperGlue实现了最佳匹配性能,正面、左面和右面的匹配准确率分别达到96.0%、94.2%和96.3%。本研究丰富了绵羊面部识别技术的理论研究并提供了技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d1e/11240732/51d472cfa966/animals-14-01923-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验