Suppr超能文献

用于小目标山羊面部检测的情境化小目标检测网络

Contextualized Small Target Detection Network for Small Target Goat Face Detection.

作者信息

Wang Yaxin, Han Ding, Wang Liang, Guo Ying, Du Hongwei

机构信息

College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010020, China.

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot 010020, China.

出版信息

Animals (Basel). 2023 Jul 20;13(14):2365. doi: 10.3390/ani13142365.

Abstract

With the advancement of deep learning technology, the importance of utilizing deep learning for livestock management is becoming increasingly evident. goat face detection provides a foundation for goat recognition and management. In this study, we proposed a novel neural network specifically designed for goat face object detection, addressing challenges such as low image resolution, small goat face targets, and indistinct features. By incorporating contextual information and feature-fusion complementation, our approach was compared with existing object detection networks using evaluation metrics such as F1-Score (F1), precision (P), recall (R), and average precision (AP). Our results show that there are 8.07%, 0.06, and 6.8% improvements in AP, P, and R, respectively. The findings confirm that the proposed object detection network effectively mitigates the impact of small targets in goat face detection, providing a solid basis for the development of intelligent management systems for modern livestock farms.

摘要

随着深度学习技术的进步,利用深度学习进行牲畜管理的重要性日益凸显。山羊面部检测为山羊识别和管理奠定了基础。在本研究中,我们提出了一种专门用于山羊面部目标检测的新型神经网络,以应对图像分辨率低、山羊面部目标小以及特征不清晰等挑战。通过融合上下文信息和特征融合互补,我们的方法与现有目标检测网络使用F1分数(F1)、精度(P)、召回率(R)和平均精度(AP)等评估指标进行了比较。我们的结果表明,AP、P和R分别提高了8.07%、0.06和6.8%。研究结果证实,所提出的目标检测网络有效地减轻了山羊面部检测中小目标的影响,为现代畜牧场智能管理系统的开发提供了坚实基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验