糖尿病环境中聚乳酸表面上的动态黏附行为及生物膜形成
Dynamic Adhesive Behavior and Biofilm Formation of on Polylactic Acid Surfaces in Diabetic Environments.
作者信息
Fernández-Grajera María, Pacha-Olivenza Miguel A, Fernández-Calderón María Coronada, González-Martín María Luisa, Gallardo-Moreno Amparo M
机构信息
Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain.
University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain.
出版信息
Materials (Basel). 2024 Jul 6;17(13):3349. doi: 10.3390/ma17133349.
Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA.
对可生物降解植入物的关注已将注意力集中在可吸收聚合物聚乳酸上。然而,这些材料促进感染的风险,尤其是在患有现有疾病的患者中,需要进行监测。用与人类疾病相关的化合物富集细菌粘附培养基有助于了解这些成分如何影响感染过程的发展。具体而言,这项工作评估了葡萄糖和酮体(在糖尿病背景下)对细菌粘附到生物材料聚乳酸的动力学的影响,采用了不同的方法,并根据细菌表面的物理性质及其代谢活性讨论了结果。酮症酸中毒和高血糖症(GK2)的组合似乎是最糟糕的情况:随着时间的推移,这个系统会促进持续细菌定植的状态,抑制粘附的稳定期,并加强细菌与表面的附着。此外,这些补充剂会导致细菌代谢活性显著增加。与未富集的培养基相比,在酮症酸中毒条件下生物膜形成增加一倍,而在浮游状态下,是葡萄糖触发代谢活性,当仅存在酮成分时,代谢活性几乎被抑制。这两条信息对于理解在实际系统中可能发生的情况是互补的,在实际系统中,浮游细菌是最初在表面定植的细菌,随后,这些附着的细菌最终形成生物膜。这些信息凸显了对糖尿病患者进行良好监测的必要性,特别是如果他们使用由聚乳酸制成的植入装置。
相似文献
Materials (Basel). 2024-7-6
Colloids Surf B Biointerfaces. 2022-1
Colloids Surf B Biointerfaces. 2019-11-3
Front Microbiol. 2021-5-28
Polymers (Basel). 2022-11-17
Methods Mol Biol. 2007
本文引用的文献
Eng Regen. 2020
Polymers (Basel). 2021-12-8