Khan Afaq Ullah, Tahir Kamran, Shah Muhammad Zia Ullah, Albaqawi Hissah Saedoon, Almarhoon Zainab M, Alanazi Abdulaziz A, Alkudaisi Nora Awad, Althagafi Talal M, Badi Nacer, Zaki Magdi E A
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 24551, Khyber Pakhtunkhwa, Pakistan.
Nanomaterials (Basel). 2024 Jul 1;14(13):1136. doi: 10.3390/nano14131136.
This study reports a novel CuSe-TiO-GO composite, synthesized by a facile hydrothermal method at a controlled temperature, and investigates its electrochemical performance for supercapacitors (SCs) and photocatalytic behavior for degrading methylene blue (MB) dye. The compositional phase structure and chemical bond interaction were thoroughly investigated. The as-fabricated pristine, binary, and ternary composites underwent comprehensive characterization employing spectroscopic techniques and electrochemical analysis. Compared with pure and binary compounds (CuSe, TiO, and binary CuSe-TiO composites), the ternary CuSe-TiO-GO composites demonstrated a high degradation efficiency while degrading MB in less than just 80 min (240 min, 100 min, and 140 min, respectively). The photocatalytic activity of the ternary CuSe-TiO-GO composites is enhanced due to the highly positive conduction band of CuSe, leading to the quick excitation of electrons to the conduction band of CuSe. Subsequently, graphene oxide (GO) left holes on the photocatalyst surface for MB, as GO assisted the photoexcited electron-hole pairs, resulting in enhanced photocatalytic performance. The CuSe-TiO-GO electrode for the supercapacitor indicates a 310.6 F/g and 135.2 F/g capacitance when the discharge current upsurges from 1 to 12 A/g. The good photocatalytic and energy storage performance is due to the smaller charge transfer resistance, which promotes efficient separation of electron-hole pairs.
本研究报道了一种通过简便水热法在可控温度下合成的新型CuSe-TiO-GO复合材料,并研究了其在超级电容器(SCs)方面的电化学性能以及降解亚甲基蓝(MB)染料的光催化行为。对其组成相结构和化学键相互作用进行了深入研究。采用光谱技术和电化学分析方法对制备的原始、二元和三元复合材料进行了全面表征。与纯化合物和二元化合物(CuSe、TiO以及二元CuSe-TiO复合材料)相比,三元CuSe-TiO-GO复合材料在降解MB时表现出高降解效率,降解时间不到80分钟(纯化合物、二元化合物分别为240分钟、100分钟和140分钟)。三元CuSe-TiO-GO复合材料的光催化活性增强,这是由于CuSe的导带电位更正,导致电子快速激发到CuSe的导带。随后,氧化石墨烯(GO)在光催化剂表面为MB留下空穴,因为GO辅助了光激发的电子-空穴对,从而提高了光催化性能。用于超级电容器的CuSe-TiO-GO电极在放电电流从1 A/g增加到12 A/g时,电容分别为310.6 F/g和135.2 F/g。良好的光催化和储能性能归因于较小的电荷转移电阻,这促进了电子-空穴对的有效分离。