Suppr超能文献

全基因组关联研究、多组学共定位和机器学习综合分析与油菜籽抗 . 相关的钙信号基因

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

机构信息

Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.

出版信息

Int J Mol Sci. 2024 Jun 25;25(13):6932. doi: 10.3390/ijms25136932.

Abstract

(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor genes. Genome-wide identification of genes involved in QDR to Ss is yet to be conducted. In this study, we integrated several assays including genome-wide association study (GWAS), multi-omics co-localization, and machine learning prediction to identify, on a genome-wide scale, genes involved in the oilseed rape QDR to Ss. Employing GWAS and multi-omics co-localization, we identified seven resistance-associated loci (RALs) associated with oilseed rape resistance to Ss. Furthermore, we developed a machine learning algorithm and named it Integrative Multi-Omics Analysis and Machine Learning for Target Gene Prediction (iMAP), which integrates multi-omics data to rapidly predict disease resistance-related genes within a broad chromosomal region. Through iMAP based on the identified RALs, we revealed multiple calcium signaling genes related to the QDR to Ss. Population-level analysis of selective sweeps and haplotypes of variants confirmed the positive selection of the predicted calcium signaling genes during evolution. Overall, this study has developed an algorithm that integrates multi-omics data and machine learning methods, providing a powerful tool for predicting target genes associated with specific traits. Furthermore, it makes a basis for further understanding the role and mechanisms of calcium signaling genes in the QDR to Ss.

摘要

(Ss) 是一种极具破坏性的真菌病原体,可导致包括油菜在内的多种重要经济作物产量严重损失。植物对 Ss 的抗性属于由多个微效基因控制的数量抗性(QDR)。目前尚未对与 Ss 相关的 QDR 基因进行全基因组鉴定。在这项研究中,我们综合了几种分析方法,包括全基因组关联研究(GWAS)、多组学共定位和机器学习预测,以在全基因组范围内鉴定与油菜对 Ss 的 QDR 相关的基因。通过 GWAS 和多组学共定位,我们确定了与油菜对 Ss 抗性相关的七个抗性相关基因座(RAL)。此外,我们开发了一种机器学习算法,并将其命名为整合多组学分析和机器学习用于靶基因预测(iMAP),该算法整合了多组学数据,可快速预测广泛染色体区域内与疾病抗性相关的基因。通过基于鉴定出的 RAL 的 iMAP,我们揭示了与 Ss 的 QDR 相关的多个钙信号基因。群体水平的选择扫掠和变异体单倍型分析证实了预测的钙信号基因在进化过程中受到了正选择。总的来说,这项研究开发了一种整合多组学数据和机器学习方法的算法,为预测与特定性状相关的靶基因提供了一种强大的工具。此外,它为进一步了解钙信号基因在 QDR 中对 Ss 的作用和机制奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/312b/11240920/0109862ea77e/ijms-25-06932-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验