Suppr超能文献

高阶谱分析结合卷积神经网络在心房颤动检测中的初步研究。

Higher-Order Spectral Analysis Combined with a Convolution Neural Network for Atrial Fibrillation Detection-Preliminary Study.

机构信息

Faculty of Biomedical Engineering, Department of Medical Informatics and Artificial Intelligence, Silesian University of Technology, Roosevelt 40, 41-800 Zabrze, Poland.

出版信息

Sensors (Basel). 2024 Jun 27;24(13):4171. doi: 10.3390/s24134171.

Abstract

The global burden of atrial fibrillation (AFIB) is constantly increasing, and its early detection is still a challenge for public health and motivates researchers to improve methods for automatic AFIB prediction and management. This work proposes higher-order spectra analysis, especially the bispectrum of electrocardiogram (ECG) signals combined with the convolution neural network (CNN) for AFIB detection. Like other biomedical signals, ECG is non-stationary, non-linear, and non-Gaussian in nature, so the spectra of higher-order cumulants, in this case, bispectra, preserve valuable features. The two-dimensional (2D) bispectrum images were applied as input for the two CNN architectures with the output AFIB vs. no-AFIB: the pre-trained modified GoogLeNet and the proposed CNN called AFIB-NET. The MIT-BIH Atrial Fibrillation Database (AFDB) was used to evaluate the performance of the proposed methodology. AFIB-NET detected atrial fibrillation with a sensitivity of 95.3%, a specificity of 93.7%, and an area under the receiver operating characteristic (ROC) of 98.3%, while for GoogLeNet results for sensitivity and specificity were equal to 96.7%, 82%, respectively, and the area under ROC was equal to 96.7%. According to preliminary studies, bispectrum images as input to 2D CNN can be successfully used for AFIB rhythm detection.

摘要

心房颤动(AFIB)的全球负担不断增加,其早期检测仍然是公共卫生的一个挑战,这促使研究人员改进自动 AFIB 预测和管理方法。本研究提出了高阶谱分析,特别是心电图(ECG)信号的双谱与卷积神经网络(CNN)相结合,用于 AFIB 检测。与其他生物医学信号一样,ECG 在本质上是非平稳的、非线性的和非正态的,因此高阶累积量的谱,在这种情况下,双谱,保留了有价值的特征。二维(2D)双谱图像被用作两个具有 AFIB 与非-AFIB 输出的 CNN 架构的输入:经过预训练的修改版 GoogLeNet 和称为 AFIB-NET 的提议 CNN。麻省理工学院生物医学工程系统分部心房颤动数据库(AFDB)用于评估所提出方法的性能。AFIB-NET 以 95.3%的敏感性、93.7%的特异性和 98.3%的接收器工作特性(ROC)曲线下面积检测到心房颤动,而对于 GoogLeNet,敏感性和特异性的结果分别等于 96.7%和 82%,ROC 曲线下面积等于 96.7%。根据初步研究,双谱图像作为 2D CNN 的输入可成功用于 AFIB 节律检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbad/11243991/9f76730ab589/sensors-24-04171-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验