Shao Guangxiao, Lin Fanyu, Li Chao, Shao Wei, Chai Wennan, Xu Xiaorui, Zhang Mingyue, Sun Zhen, Li Qingdang
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
College of Sino-German Institute Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China.
Sensors (Basel). 2024 Jun 30;24(13):4263. doi: 10.3390/s24134263.
With the transformation and development of the automotive industry, low-cost and seamless indoor and outdoor positioning has become a research hotspot for modern vehicles equipped with in-vehicle infotainment systems, Internet of Vehicles, or other intelligent systems (such as Telematics Box, Autopilot, etc.). This paper analyzes modern vehicles in different configurations and proposes a low-cost, versatile indoor non-visual semantic mapping and localization solution based on low-cost sensors. Firstly, the sliding window-based semantic landmark detection method is designed to identify non-visual semantic landmarks (e.g., entrance/exit, ramp entrance/exit, road node). Then, we construct an indoor non-visual semantic map that includes the vehicle trajectory waypoints, non-visual semantic landmarks, and Wi-Fi fingerprints of RSS features. Furthermore, to estimate the position of modern vehicles in the constructed semantic maps, we proposed a graph-optimized localization method based on landmark matching that exploits the correlation between non-visual semantic landmarks. Finally, field experiments are conducted in two shopping mall scenes with different underground parking layouts to verify the proposed non-visual semantic mapping and localization method. The results show that the proposed method achieves a high accuracy of 98.1% in non-visual semantic landmark detection and a low localization error of 1.31 m.
随着汽车行业的转型与发展,低成本且无缝的室内外定位已成为配备车载信息娱乐系统、车联网或其他智能系统(如远程信息处理盒、自动驾驶等)的现代车辆的研究热点。本文分析了不同配置的现代车辆,并提出了一种基于低成本传感器的低成本、通用型室内非视觉语义映射与定位解决方案。首先,设计了基于滑动窗口的语义地标检测方法,以识别非视觉语义地标(如入口/出口、匝道入口/出口、道路节点)。然后,构建了一个室内非视觉语义地图,该地图包括车辆轨迹航路点、非视觉语义地标以及RSS特征的Wi-Fi指纹。此外,为了估计现代车辆在构建的语义地图中的位置,我们提出了一种基于地标匹配的图优化定位方法,该方法利用了非视觉语义地标之间的相关性。最后,在两个具有不同地下停车场布局的商场场景中进行了现场实验,以验证所提出的非视觉语义映射与定位方法。结果表明,该方法在非视觉语义地标检测中达到了98.1%的高精度,定位误差低至1.31米。