Morales-Ivorra Isabel, Taverner Delia, Codina Oriol, Castell Sonia, Fischer Peter, Onken Derek, Martínez-Osuna Píndaro, Battioui Chakib, Marín-López Manuel Alejandro
Rheumatology Department, Hospital Universitari d'Igualada, 08700 Igualada, Spain.
Rheumatology Department, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain.
Diagnostics (Basel). 2024 Jun 30;14(13):1394. doi: 10.3390/diagnostics14131394.
External validation is crucial in developing reliable machine learning models. This study aimed to validate three novel indices-Thermographic Joint Inflammation Score (ThermoJIS), Thermographic Disease Activity Index (ThermoDAI), and Thermographic Disease Activity Index-C-reactive protein (ThermoDAI-CRP)-based on hand thermography and machine learning to assess joint inflammation and disease activity in rheumatoid arthritis (RA) patients. A 12-week prospective observational study was conducted with 77 RA patients recruited from rheumatology departments of three hospitals. During routine care visits, indices were obtained at baseline and week 12 visits using a pre-trained machine learning model. The performance of these indices was assessed cross-sectionally and longitudinally using correlation coefficients, the area under the receiver operating curve (AUROC), sensitivity, specificity, and positive and negative predictive values. ThermoDAI and ThermoDAI-CRP correlated with CDAI, SDAI, and DAS28-CRP cross-sectionally (ρ = 0.81; ρ = 0.83; ρ = 0.78) and longitudinally (ρ = 0.55; ρ = 0.61; ρ = 0.60), all < 0.001. ThermoDAI and ThermoDAI-CRP also outperformed Patient Global Assessment (PGA) and PGA + C-reactive protein (CRP) in detecting changes in 28-swollen joint counts (SJC28). ThermoJIS had an AUROC of 0.67 (95% CI, 0.58 to 0.76) for detecting patients with swollen joints and effectively identified patients transitioning from SJC28 > 1 at baseline visit to SJC28 ≤ 1 at week 12 visit. These results support the effectiveness of ThermoJIS in assessing joint inflammation, as well as ThermoDAI and ThermoDAI-CRP in evaluating disease activity in RA patients.
外部验证对于开发可靠的机器学习模型至关重要。本研究旨在基于手部热成像和机器学习验证三个新指标——热成像关节炎症评分(ThermoJIS)、热成像疾病活动指数(ThermoDAI)和热成像疾病活动指数- C反应蛋白(ThermoDAI-CRP),以评估类风湿关节炎(RA)患者的关节炎症和疾病活动度。对从三家医院的风湿病科招募的77例RA患者进行了为期12周的前瞻性观察研究。在常规护理就诊期间,使用预训练的机器学习模型在基线和第12周就诊时获取指标。使用相关系数、受试者工作特征曲线下面积(AUROC)、敏感性、特异性以及阳性和阴性预测值对这些指标的性能进行横断面和纵向评估。ThermoDAI和ThermoDAI-CRP与CDAI、SDAI和DAS28-CRP在横断面(ρ = 0.81;ρ = 0.83;ρ = 0.78)和纵向(ρ = 0.55;ρ = 0.61;ρ = 0.60)均相关,所有P值均<0.001。在检测28个肿胀关节计数(SJC28)的变化方面,ThermoDAI和ThermoDAI-CRP也优于患者整体评估(PGA)和PGA + C反应蛋白(CRP)。ThermoJIS检测关节肿胀患者的AUROC为0.67(95%CI,0.58至0.76),并有效识别了从基线就诊时SJC28>1转变为第12周就诊时SJC28≤1的患者。这些结果支持了ThermoJIS在评估关节炎症方面的有效性,以及ThermoDAI和ThermoDAI-CRP在评估RA患者疾病活动度方面的有效性。