Suppr超能文献

使用热成像和机器学习评估类风湿关节炎患者的炎症:一种快速、自动化的技术。

Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique.

机构信息

Rheumatology Department, Hospital Universitari d'Igualada, Igualada, Spain

Rheumatology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain.

出版信息

RMD Open. 2022 Jul;8(2). doi: 10.1136/rmdopen-2022-002458.

Abstract

OBJECTIVES

Sensitive detection of joint inflammation in rheumatoid arthritis (RA) is crucial to the success of the treat-to-target strategy. In this study, we characterise a novel machine learning-based computational method to automatically assess joint inflammation in RA using thermography of the hands, a fast and non-invasive imaging technique.

METHODS

We recruited 595 patients with arthritis and osteoarthritis, as well as healthy subjects at two hospitals over 4 years. Machine learning was used to assess joint inflammation from the thermal images of the hands using ultrasound as the reference standard, obtaining a Thermographic Joint Inflammation Score (ThermoJIS). The machine learning model was trained and tuned using data from 449 participants with different types of arthritis, osteoarthritis or without rheumatic disease (development set). The performance of the method was evaluated based on 146 patients with RA (validation set) using Spearman's rank correlation coefficient, area under the receiver-operating curve (AUROC), average precision, sensitivity, specificity, positive and negative predictive value and F1-score.

RESULTS

ThermoJIS correlated moderately with ultrasound scores (grey-scale synovial hypertrophy=0.49, p<0.001; and power Doppler=0.51, p<0.001). The AUROC for ThermoJIS for detecting active synovitis was 0.78 (95% CI, 0.71 to 0.86; p<0.001). In patients with RA in clinical remission, ThermoJIS values were significantly higher when active synovitis was detected by ultrasound.

CONCLUSIONS

ThermoJIS was able to detect joint inflammation in patients with RA, even in those in clinical remission. These results open an opportunity to develop new tools for routine detection of joint inflammation.

摘要

目的

类风湿关节炎(RA)关节炎症的敏感检测对于靶向治疗策略的成功至关重要。在这项研究中,我们描述了一种新的基于机器学习的计算方法,该方法使用手部热成像来自动评估 RA 中的关节炎症,这是一种快速且非侵入性的成像技术。

方法

我们在 4 年内在两家医院招募了 595 名关节炎和骨关节炎患者以及健康受试者。使用超声作为参考标准,通过机器学习对手部热图像进行评估,得出热成像关节炎症评分(ThermoJIS)。使用来自不同类型关节炎、骨关节炎或无风湿性疾病的 449 名参与者的数据来训练和调整机器学习模型(开发集)。使用 146 名 RA 患者(验证集)评估该方法的性能,采用 Spearman 等级相关系数、受试者工作特征曲线下面积(AUROC)、平均精度、敏感性、特异性、阳性和阴性预测值以及 F1 评分。

结果

ThermoJIS 与超声评分中度相关(灰度滑膜肥厚=0.49,p<0.001;和功率多普勒=0.51,p<0.001)。ThermoJIS 检测活动性滑膜炎的 AUROC 为 0.78(95%CI,0.71 至 0.86;p<0.001)。在处于临床缓解期的 RA 患者中,当超声检测到活动性滑膜炎时,ThermoJIS 值显著升高。

结论

ThermoJIS 能够检测 RA 患者的关节炎症,即使在处于临床缓解期的患者中也是如此。这些结果为开发常规检测关节炎症的新工具提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeba/9295660/e67968f037ac/rmdopen-2022-002458f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验