Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.
Anal Chem. 2024 Jul 23;96(29):11780-11789. doi: 10.1021/acs.analchem.4c01331. Epub 2024 Jul 13.
Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring. To address this, we constructed a four DNAzyme array (17E, GR-5, EtNA, and NaA43) and used a pattern-based readout to improve sensor accuracy. We measured cross-reactivity between three metal cofactors (Pb, Ca, and Na) and common interferents (Mg, Zn, Mn, UO, Li, K, and Ag) and then used t-SNE analysis to identify and quantify the metal ion. We further showed that this method can be used for distinguishing mixtures of metals and detecting Pb in environmental soil samples at micromolar concentrations.
重金属污染食品和水是一个主要的公共卫生问题,因为重金属在微量下就具有毒性。核酸酶传感器作为一种快速现场检测重金属的有前途的工具正在出现,这有助于最大限度地减少暴露。然而,核酸酶对其目标金属的活性不是绝对的,并且与类似的金属具有交叉反应性,这是核酸酶传感器在环境监测中的广泛应用的一个主要挑战。为了解决这个问题,我们构建了一个四核酸酶阵列(17E、GR-5、EtNA 和 NaA43),并使用基于模式的读出方法来提高传感器的准确性。我们测量了三种金属辅因子(Pb、Ca 和 Na)和常见干扰物(Mg、Zn、Mn、UO、Li、K 和 Ag)之间的交叉反应性,然后使用 t-SNE 分析来识别和量化金属离子。我们进一步表明,该方法可用于区分金属混合物并检测环境土壤样品中微摩尔浓度的 Pb。