Liu Siqian, Xu Benfeng, Li Chongyang, Ren Yanlin, Gan Hao, Kuang Shi, Lei Chunyang, Nie Zhou
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
JACS Au. 2025 Jun 2;5(6):2443-2462. doi: 10.1021/jacsau.5c00398. eCollection 2025 Jun 23.
The mounting global crisis of environmental pollution necessitates transformative advances in analytical technologies that combine speed, precision, and field applicability. To meet this demand, next-generation analytical platforms must achieve seamless integration of two critical features: molecular-level recognition fidelity and reliable signal transduction. DNA nanotechnology leverages sequence-specific molecular recognition and programmable self-assembly to enable both natural (e.g., riboswitches) and synthetic (e.g., aptamers, DNAzymes) biosensing modalities. The structural programmability and predictable Watson-Crick base pairing of DNA provide a modular framework for designing next-generation biosensors with tunable specificity and sensitivity. When integrated with portable point-of-care (POC) platforms, these biosensing systems enable field-deployable, rapid, and operator-agnostic detection of toxicants across diverse matrixes, making them highly suitable for complex environmental monitoring tasks. This perspective highlights the potential and strategic approaches for constructing biosensors utilizing DNA-based recognition elements and structural materials. It explores the progress in field-deployable DNA-based biosensors, which are revolutionizing the on-site detection of environmental toxicants. We also discuss the current challenges and future perspectives for DNA-based biosensing systems in environmental pollution monitoring, offering insights into their broader applications.
日益严重的全球环境污染危机需要在分析技术方面取得变革性进展,这些技术要兼具速度、精度和现场适用性。为满足这一需求,下一代分析平台必须实现两个关键特性的无缝集成:分子水平的识别保真度和可靠的信号转导。DNA纳米技术利用序列特异性分子识别和可编程自组装,实现天然(如核糖开关)和合成(如适体、DNA酶)两种生物传感模式。DNA的结构可编程性和可预测的沃森-克里克碱基配对为设计具有可调特异性和灵敏度的下一代生物传感器提供了一个模块化框架。当与便携式即时检测(POC)平台集成时,这些生物传感系统能够在不同基质中对有毒物质进行现场可部署、快速且无需操作人员专业知识的检测,使其非常适合复杂的环境监测任务。本文阐述了利用基于DNA的识别元件和结构材料构建生物传感器的潜力和战略方法。探讨了可现场部署的基于DNA的生物传感器的进展,这些传感器正在彻底改变环境有毒物质的现场检测。我们还讨论了基于DNA的生物传感系统在环境污染监测中的当前挑战和未来前景,为其更广泛的应用提供见解。