Suppr超能文献

机器学习可以根据临床和超声特征可靠地预测乳腺病变的恶性程度。

Machine learning can reliably predict malignancy of breast lesions based on clinical and ultrasonographic features.

作者信息

Buzatto I P C, Recife S A, Miguel L, Bonini R M, Onari N, Faim A L P A, Silvestre L, Carlotti D P, Fröhlich A, Tiezzi D G

机构信息

Department of Obstetrics and Gynecology - Breast Disease Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

Department of Gynecology & Obstetrics, Women's Health Reference Center of Ribeirão Preto (MATER), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

出版信息

Breast Cancer Res Treat. 2025 Jun;211(3):581-593. doi: 10.1007/s10549-024-07429-0. Epub 2024 Jul 13.

Abstract

PURPOSE

To establish a reliable machine learning model to predict malignancy in breast lesions identified by ultrasound (US) and optimize the negative predictive value to minimize unnecessary biopsies.

METHODS

We included clinical and ultrasonographic attributes from 1526 breast lesions classified as BI-RADS 3, 4a, 4b, 4c, 5, and 6 that underwent US-guided breast biopsy in four institutions. We selected the most informative attributes to train nine machine learning models, ensemble models and models with tuned threshold to make inferences about the diagnosis of BI-RADS 4a and 4b lesions (validation dataset). We tested the performance of the final model with 403 new suspicious lesions.

RESULTS

The most informative attributes were shape, margin, orientation and size of the lesions, the resistance index of the internal vessel, the age of the patient and the presence of a palpable lump. The highest mean negative predictive value (NPV) was achieved with the K-Nearest Neighbors algorithm (97.9%). Making ensembles did not improve the performance. Tuning the threshold did improve the performance of the models and we chose the algorithm XGBoost with the tuned threshold as the final one. The tested performance of the final model was: NPV 98.1%, false negative 1.9%, positive predictive value 77.1%, false positive 22.9%. Applying this final model, we would have missed 2 of the 231 malignant lesions of the test dataset (0.8%).

CONCLUSION

Machine learning can help physicians predict malignancy in suspicious breast lesions identified by the US. Our final model would be able to avoid 60.4% of the biopsies in benign lesions missing less than 1% of the cancer cases.

摘要

目的

建立一个可靠的机器学习模型,以预测超声(US)识别出的乳腺病变的恶性程度,并优化阴性预测值,以尽量减少不必要的活检。

方法

我们纳入了来自四个机构的1526个分类为BI-RADS 3、4a、4b、4c、5和6级的乳腺病变的临床和超声特征,这些病变均接受了超声引导下的乳腺活检。我们选择了最具信息量的特征来训练九个机器学习模型、集成模型以及具有调整阈值的模型,以推断BI-RADS 4a和4b级病变的诊断(验证数据集)。我们用403个新的可疑病变测试了最终模型的性能。

结果

最具信息量的特征是病变的形状、边界、方向和大小、内部血管的阻力指数、患者年龄以及可触及肿块的存在。K近邻算法实现了最高的平均阴性预测值(NPV)(97.9%)。进行集成并没有提高性能。调整阈值确实提高了模型的性能,我们选择了具有调整阈值的XGBoost算法作为最终算法。最终模型的测试性能为:NPV 98.1%,假阴性1.9%,阳性预测值77.1%,假阳性22.9%。应用这个最终模型,我们会在测试数据集中的231个恶性病变中漏诊2个(0.8%)。

结论

机器学习可以帮助医生预测超声识别出的可疑乳腺病变的恶性程度。我们的最终模型能够避免60.4%的良性病变活检,同时漏诊不到1%的癌症病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验