Suppr超能文献

朝着具有先进制造技术的工程化活体材料的实际应用迈进。

Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques.

机构信息

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.

Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China.

出版信息

ACS Synth Biol. 2024 Aug 16;13(8):2295-2312. doi: 10.1021/acssynbio.4c00259. Epub 2024 Jul 13.

Abstract

Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.

摘要

工程化活体材料(ELM)是由活细胞作为基本功能单元组成或包含活细胞的材料。这些材料可以通过自下而上的方法来构建,其中经过工程化设计的细胞会自发形成具有明确定义的聚集体。或者,可以采用自上而下的方法,利用先进的材料科学技术将细胞与各种材料结合,形成细胞与材料紧密结合的混合物。ELM 将合成生物学与材料科学融合在一起,使其能够对环境刺激(如压力、pH 值、湿度、温度和光)做出动态响应。这些材料具有独特的“活体”特性,包括自我修复、自我复制和环境适应性,使其非常适合在医学、环境保护和制造等广泛领域中的应用。它们固有的生物相容性和能够进行基因修饰的能力,使其具有定制功能和延长的可持续性。本综述强调了 ELM 在过去几十年中产生的变革性影响,特别是在医疗保健和环境保护方面。我们讨论了当前的制备方法,包括内源性和外源性支架的使用、活体组装、3D 生物打印和静电纺丝。重点介绍了为提高 ELM 在实际环境中的安全性、功能性和实际适用性而进行的正在进行的研究和技术进步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验