Suppr超能文献

神经血管体外建模中生物组装策略的进展与挑战:当前技术综述,重点介绍三维生物打印。

Advances and Challenges of Bioassembly Strategies in Neurovascular In Vitro Modeling: An Overview of Current Technologies with a Focus on Three-Dimensional Bioprinting.

机构信息

Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA.

Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 460 O'Dowd Hall, Rochester, MI 48309, USA.

出版信息

Int J Mol Sci. 2024 Oct 12;25(20):11000. doi: 10.3390/ijms252011000.

Abstract

Bioassembly encompasses various techniques such as bioprinting, microfluidics, organoids, and self-assembly, enabling advances in tissue engineering and regenerative medicine. Advancements in bioassembly technologies have enabled the precise arrangement and integration of various cell types to more closely mimic the complexity functionality of the neurovascular unit (NVU) and that of other biodiverse multicellular tissue structures. In this context, bioprinting offers the ability to deposit cells in a spatially controlled manner, facilitating the construction of interconnected networks. Scaffold-based assembly strategies provide structural support and guidance cues for cell growth, enabling the formation of complex bio-constructs. Self-assembly approaches utilize the inherent properties of cells to drive the spontaneous organization and interaction of neuronal and vascular components. However, recreating the intricate microarchitecture and functional characteristics of a tissue/organ poses additional challenges. Advancements in bioassembly techniques and materials hold great promise for addressing these challenges. The further refinement of bioprinting technologies, such as improved resolution and the incorporation of multiple cell types, can enhance the accuracy and complexity of the biological constructs; however, developing bioinks that support the growth of cells, viability, and functionality while maintaining compatibility with the bioassembly process remains an unmet need in the field, and further advancements in the design of bioactive and biodegradable scaffolds will aid in controlling cell adhesion, differentiation, and vascularization within the engineered tissue. Additionally, integrating advanced imaging and analytical techniques can provide real-time monitoring and characterization of bioassembly, aiding in quality control and optimization. While challenges remain, ongoing research and technological advancements propel the field forward, paving the way for transformative developments in neurovascular research and tissue engineering. This work provides an overview of the advancements, challenges, and future perspectives in bioassembly for fabricating neurovascular constructs with an add-on focus on bioprinting technologies.

摘要

生物组装涵盖了各种技术,如生物打印、微流控、类器官和自组装,这些技术推动了组织工程和再生医学的发展。生物组装技术的进步使得各种细胞类型的精确排列和集成成为可能,从而更接近地模拟神经血管单元(NVU)和其他生物多样性多细胞组织结构的复杂性功能。在这种情况下,生物打印具有以空间控制方式沉积细胞的能力,促进了相互连接的网络的构建。基于支架的组装策略为细胞生长提供结构支持和引导线索,使复杂的生物构建体得以形成。自组装方法利用细胞的固有特性来驱动神经元和血管成分的自发组织和相互作用。然而,要重建组织/器官的复杂微观结构和功能特征仍然存在额外的挑战。生物组装技术和材料的进步为解决这些挑战提供了很大的希望。生物打印技术的进一步改进,如提高分辨率和纳入多种细胞类型,可以提高生物构建体的准确性和复杂性;然而,开发支持细胞生长、活力和功能的生物墨水,同时保持与生物组装过程的兼容性,仍然是该领域未满足的需求,生物活性和可生物降解支架的进一步设计将有助于控制工程组织内的细胞黏附、分化和血管生成。此外,集成先进的成像和分析技术可以提供生物组装的实时监测和特性描述,有助于质量控制和优化。尽管仍然存在挑战,但正在进行的研究和技术进步推动了该领域的发展,为神经血管研究和组织工程的变革性发展铺平了道路。这项工作概述了生物组装在制造神经血管构建体方面的进展、挑战和未来展望,并特别关注生物打印技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfad/11506837/ee95bcfccfb2/ijms-25-11000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验