Suppr超能文献

利用掺杂策略和界面工程来增强多硫化锂的催化转化以用于高性能锂硫电池。

Leveraging doping strategies and interface engineering to enhance catalytic transformation of lithium polysulfides for high-performance lithium-sulfur batteries.

作者信息

Wei Shasha, Shang Jitao, Zheng Yayun, Wang Teng, Kong Xirui, He Qiu, Zhang Zhaofu, Zhao Yan

机构信息

The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China.

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.

出版信息

J Colloid Interface Sci. 2024 Dec;675:904-914. doi: 10.1016/j.jcis.2024.07.079. Epub 2024 Jul 10.

Abstract

The commercialization of lithium-sulfur (Li-S) batteries has faced challenges due to the shuttle effect of soluble intermediate polysulfides and the sluggish kinetics of sulfur redox reactions. In this study, a synergistic catalyst medium was developed as a high-performance sulfur cathode material for Li-S batteries. Termed A/R-TiO@ Ni-N-MXene, this sulfur cathode material features an in-situ derived anatase-rutile homojunction of TiO nanoparticles on Ni-N dual-atom-doped MXene nanosheets. Using in-situ transmission electron microscopy (TEM) technique, we observed the growth process of the homojunction for the first time confirming that homojunctions facilitated charge transfer, while dual-atom doping offered abundant active sites for anchoring and converting soluble polysulfides. Theoretical calculations and experiments showed that these synergistic effects effectively mitigated the shuttle effect, leading to improved cycling performance of Li-S batteries. After 500 cycles at a 1C rate, Li-S batteries using A/R-TiO@Ni-N-MXene as cathode materials exhibited stable and highly reversible capacity with a capacity decay of only 0.056 % per cycle. Even after 150 cycles at a 0.1C rate, a high-capacity retention rate of 62.8 % was achieved. Additionally, efficient sulfur utilization was observed, with 1280.76 mA h/g at 0.1C, 694.24 mA h/g at 1C, alongside a sulfur loading of 1.5-2 mg/cm. The effective strategy based on homojunctions showcases promise for designing high-performance Li-S batteries.

摘要

锂硫(Li-S)电池的商业化面临挑战,这是由于可溶性中间多硫化物的穿梭效应以及硫氧化还原反应缓慢的动力学。在本研究中,开发了一种协同催化剂介质作为锂硫电池的高性能硫正极材料。这种硫正极材料称为A/R-TiO@Ni-N-MXene,其特征在于在Ni-N双原子掺杂的MXene纳米片上原位衍生出TiO纳米颗粒的锐钛矿-金红石同质结。使用原位透射电子显微镜(TEM)技术,我们首次观察到了同质结的生长过程,证实了同质结促进了电荷转移,而双原子掺杂提供了丰富的活性位点来锚定和转化可溶性多硫化物。理论计算和实验表明,这些协同效应有效地减轻了穿梭效应,从而提高了锂硫电池的循环性能。以1C倍率进行500次循环后,使用A/R-TiO@Ni-N-MXene作为正极材料的锂硫电池表现出稳定且高度可逆的容量,每循环容量衰减仅0.056%。即使在0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验