Suppr超能文献

两种酶有助于刚地弓形虫线粒体中的柠檬酸生成。

Two enzymes contribute to citrate production in the mitochondrion of Toxoplasma gondii.

机构信息

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China.

College of Life Sciences, Longyan University, Longyan, Fujian, PR China.

出版信息

J Biol Chem. 2024 Aug;300(8):107565. doi: 10.1016/j.jbc.2024.107565. Epub 2024 Jul 11.

Abstract

Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.

摘要

柠檬酸合酶催化三羧酸 (TCA) 循环的第一步和限速反应,将草酰乙酸和乙酰辅酶 A 缩合生成柠檬酸。寄生原虫刚地弓形虫具有完整的 TCA 循环活性,但它的生理作用仍知之甚少。在这项研究中,我们鉴定了三种具有预测柠檬酸合酶 (CS) 活性的蛋白质,其中两种定位于线粒体中,包括被认为参与 2-甲基柠檬酸循环的 2-甲基柠檬酸合酶 (PrpC),这是丙酰辅酶 A 解毒的替代途径。对两种线粒体酶的进一步分析表明,两者都具有柠檬酸合酶活性,但 CS1 的催化效率远高于 PrpC。一致地,CS1 的缺失导致葡萄糖衍生的碳进入 TCA 循环中间物的通量显著减少,导致寄生虫生长减少。相比之下,PrpC 的缺失几乎没有影响。另一方面,同时缺失 CS1 和 PrpC 比单独缺失任何一个基因导致更严重的代谢变化和生长缺陷,表明 PrpC 在生理条件下确实有助于柠檬酸的产生。有趣的是,单独或组合缺失 Δcs1 和 Δprpc 对寄生虫在小鼠中的毒力只有轻微或可以忽略不计的影响,表明这两种酶在体内都是可有可无的。CS1 和 PrpC 的可有可无表明 TCA 循环对于速殖子的无性繁殖不是必需的,或者寄生虫线粒体中有其他柠檬酸供应途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d38/11359734/d34125ce6a85/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验